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a b s t r a c t

Nowadays, micromagnetic simulations are a common tool for studying a wide range of different mag-
netic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and
validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We
propose a new standard problem by providing a detailed specification and analysis of a sufficiently
simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered
by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance
modes via Fourier transform. Simulations are performed using both finite difference and finite element
numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial
conditions and simulation parameters on the character of the observed resonance modes for this stan-
dard problem. We provide detailed instructions and code to assist in using the results for evaluation of
new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and
modes in general.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computational micromagnetics is a well developed field that
sees widespread use in both modern physics and magnetic device
engineering communities [1–3]. With the advancement of micro-
magnetic models, simulation techniques, and processing power,
the list of phenomena that can be studied has grown substantially
and includes such diverse fields as the spin transfer torque [4] and
spin wave dispersion in magnonic crystals [5]. An essential equa-
tion in most of the micromagnetic system models [6] is the
Landau–Lifshitz–Gilbert (LLG) equation – a differential equation
governing the magnetization dynamics. However, this equation
can be analytically solved only for a very limited number of sys-
tems and, because of that, the complexity of common problems
requires the use of micromagnetic simulation packages such as
OOMMF [7], LLG Micromagnetics, [8] Micromagnum [9], and
Mumax [10], which use the Finite Difference (FD) approach, and
Nmag [11] and Magpar [12], employing the Finite Element (FE)

approach to spatial discretization. To compare this range of nu-
merical solvers, as well as to evaluate their validity and reliability,
NIST's Micromagnetic Modelling Activity Group (μMag) publishes
standard problems [13–15]. Recent additions have included the
spin transfer torque [4] and the spin wave dispersion [16] standard
problems. In the light of this, it is natural to extend the coverage of
standard problems in order to include the FerroMagnetic Re-
sonance (FMR), a technique closely associated with many practical
uses ranging from material characterization to the study of spin
dynamics [17].

FMR probes the magnetization dynamics in samples using
microwave fields. The absorption of the applied microwave field is
at its maximum when the microwave's frequency matches the
frequency of the studied system's resonant modes. By analyzing
the resonance modes as a function of an applied magnetic field,
some material parameters, such as the Gilbert damping and
magnetic anisotropy constants, can be determined [17]. This
makes FMR a powerful technique in the characterization of fer-
romagnetic nanostructures; including measurements of spin
pumping [18] and exchange coupling [19]. In a typical experiment,
microwaves are directed across the sample using a coplanar wa-
veguide, and their transmission is measured as a function of both
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external bias field and excitation frequency [20].
In terms of computational micromagnetics, there are at least

three methods that can be used to simulate the FMR:

1. Application of a time-dependent periodic sinusoidal magnetic
microwave field of fixed frequency f to determine the magne-
tization precession amplitude in response to the system. If the
precession amplitude is small, the power absorption of the
microwave field would be small as the excitation frequency
does not couple well to the set of natural frequencies of the
system. This method is conceptually simple but computationally
very demanding as, for every frequency f, the micromagnetic
simulation needs to compute the time evolution of the system's
magnetization after the transient dynamics has been damped
and steady magnetization precession is reached. This will only
provide one point on the frequency–absorption curve and only a
micromagnetic simulation software that supports a time de-
pendent external magnetic field can be used.

2. Ringdown method [21]: the system is perturbed from its
equilibrium state by applying a short-lived and sufficiently
weak excitation, followed by simulation and recording of the
magnetization dynamics. Resonance frequencies and corre-
sponding modes are extracted by performing the Fourier trans-
form on the recorded data. This is an efficient way to determine
the eigenmodes of the system.

3. Eigenvalue method [22]: instead of simulating the time evolu-
tion of the system's magnetization as in the methods above, the
problem is represented as an eigenvalue problem, whose solu-
tions provide the frequencies (eigenvalues) and mode shapes
(eigenvectors) of the system. This method requires specialist
software that is not widely available.

Our goal is to establish a standard problem to serve as a
benchmark against which future simulation tools and computa-
tional studies of the FMR can be compared and validated. In this
standard problem proposal, we will follow the second (ringdown)
method, which is supported by most micromagnetic packages and
compare its output with the third (eigenvalue) method. We pro-
vide a detailed standard problem description and specification as
well as the complete set of computational steps and code re-
pository [23] in order to make it easily reproducible and accessible
to a wide community. Parts of the code repository can also be used
as an example to compute FMR data and modes from micro-
magnetic simulations. It is hoped that this work will aid the de-
velopment of micromagnetic simulations of systems undergoing
FMR and support and drive experimental efforts.

Section 2 introduces and motivates the choice of the FMR
standard problem, and introduces the frequency spectrum com-
puted in different ways. Section 3 provides a more detailed dis-
cussion including computation of the normal mode shape, the
eigenvalue problem approach as an alternative way of computing
the frequency spectrum and normal modes, and a systematic

study of the dependence of the results on variations in the simu-
lation parameters such as damping, relaxation of the initial state,
nature of the perturbation and mesh discretization. We close with
a summary in Section 4. The Appendix provides more details on
parameters used in the Nmag simulations, the eigenvalue ap-
proach and simulation results obtained in the absence of de-
magnetization effects.

2. Selection and definition of standard problem

2.1. Problem definition

We choose a cuboidal thin film permalloy sample measuring
120�120�10 nm3, as shown in Fig. 1(a). The choice of a cuboid is
important as it ensures that the finite difference method employed
by OOMMF does not introduce errors due to irregular boundaries
that cannot be discretized well [24]. We choose the thin film
geometry to be thin enough so that the variation of magnetization
dynamics along the out-of-film direction can be neglected. Mate-
rial parameters based on permalloy are shown in Table 1. An ex-
ternal magnetic bias field Hext with magnitude =H 80 kA/mext is
applied along the direction ( )=e 1, 0.715, 0 (at °35.56 to the x-
axis), i.e., ( )= · ≈HH e e/ 65.1, 46.5, 0 kA/mext ext as shown in Fig. 1
(a). We choose the external magnetic field direction slightly off the
sample diagonal in order to break the system's symmetry and thus
avoid degenerate eigenmodes.

First, we initialize the system with a uniform out-of-plane
magnetization ( )=m 0, 0, 10 . The system is allowed to relax for
5 ns in the presence of Hext, which was found to be sufficient time
to obtain a well-converged equilibrium magnetization configura-
tion. We refer to this stage of simulation as the relaxation stage,
and its final relaxed magnetization configuration, as shown in
Fig. 2, is saved to serve as the initial configuration for the next
dynamic stage. Conceptually, what is required to find the relaxed
state is to minimize the system's energy in the presence of an
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Fig. 1. (a) Geometry of the thin film sample, showing the static bias field Hext. The field is slightly off-diagonal to break the symmetry of the system and thus avoid
degenerate eigenmodes. (b) Illustration of the mesh used for the finite element approach. The discretization for the finite difference approach is to divide the system into
cubes with 5 nm edge length, resulting in × ×24 24 2 cubes (not shown).

Table 1
External magnetic fields and material (permalloy) parameters used. Where these
change between the initial relaxation stage of the simulation, and the subsequent
dynamic stage, both values are shown.

Parameter Value Unit

Saturation magnetization ( )Ms 800 kA/m
Exchange constant (A) × −1.3 10 11 J/m

Anisotropy constant (K) 0 J/m3

Gyromagnetic ratio (γ*) ×2.210173 105 m/(As)

Gilbert damping (α), relaxation 1.0
Gilbert damping (α), dynamic 0.008
DC bias field magnitude ( H0 ) 80 kA/m

DC bias field (e), relaxation [1, 0.715, 0]
DC bias field (e), dynamic [1, 0.7, 0]
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