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a b s t r a c t

This work presents a general framework for the continuum-based formulation of dissipative materials
with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermo-
dynamically consistent model developed for the magnetic hysteresis is extended to include the mag-
netostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured
through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well
as magnetization is derived from thermodynamic and dissipative potentials in accordance with the
general principles of thermodynamics. It is then demonstrated that the constitutive model is competent
to describe the magneto-mechanical behavior by comparing simulation results with the experimental
data reported in the literature.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Magnetostrictives can be classified as smart materials exhibit-
ing the conversion of energy type between input and output. The
study on the magnetostrictive effect has been performed since
James Joule first observed the length change in a sample of iron
during the process of magnetization. Magnetostrictive materials
convert magnetic energy into mechanical energy and vice-versa,
which provides actuation and sensing capabilities in a wide range
of device applications. Moreover, the knowledge of magneto-me-
chanical effect in the design of electrical machines plays important
role in regard to the reduction of noise and vibration. The recent
increase of interest in magnetostrictives caused by the commercial
availability of giant magnetostrictive materials makes it necessary
to develop a constitutive model that can more accurately predict
nonlinear, hysteretic and dissipative magnetostriction in order to
optimize the design of magneto-mechanical devices.

Magnetostrictive materials exhibit mechanical deformation in
response to magnetic fields and change their magnetization state
when mechanically stressed. Due to the coupling effect between
magnetization and magnetostriction, the applied mechanical
stress thus influences on both of magnetic and magnetostrictive
hysteresis. It is well known that there exist two kinds of magne-
tostriction: spontaneous and field-induced magnetostrictions
[1,2]. When a ferromagnetic material is cooled through its Curie
temperature, it undergoes dimensional changes due to the mag-
netic phase transition from disordered magnetic states to ordered
ones, which is known as spontaneous magnetostriction. The re-
sulting volume of the ordered magnetic moments is called a
magnetic domain. All magnetic moments in a domain are aligned

parallel and the direction of the moments randomly varies from
domain to domain throughout the ferromagnetic material. The
bulk magnetization is thus considered to be zero. On the other
hand, the field-induced magnetostriction is mainly attributed to
the reorientation of magnetic moments associated with external
magnetic fields. In general applications, magnetostrictive materi-
als are utilized in the demagnetized and ordered state. The present
work accordingly intends to propose a constitutive model for the
field-induced magnetostriction, not for spontaneous one. It is also
known that magnetostrictive materials can expand or contract in
the direction of magnetization. Compressive mechanical stress
decreases the magnetization of materials expanding under ex-
ternal magnetic field, which are called as positive magnetostric-
tion, whereas tensile stress does the opposite. In contrast, the
materials of negative magnetostriction contracting in the direction
of magnetic field exhibit the magnetization property increased
with compressive mechanical stress [2–4].

For several decades, a wide variety of constitutive models have
been developed to describe the nonlinear magnetostrictive effect.
In essence, numerous modeling works are based on the framework
of the Preisach and Jiles–Atherton models. Some approaches on
magneto-mechanical effect seem to follow the phenomenological
description as in the Preisach model [5–7]. Others, meanwhile,
utilize the concept of the Jiles–Atherton model in the context of
physically based energy aspects [8–11]. Another class of con-
stitutive models makes use of the thermodynamic principles [12].
These thermodynamically motivated models intend to describe
the magnetostrictive material response through the definition of a
specific free energy function in the Taylor series form [13–15] or
through the introduction of internal state variables [16–18].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

http://dx.doi.org/10.1016/j.jmmm.2016.04.017
0304-8853/& 2016 Elsevier B.V. All rights reserved.

Journal of Magnetism and Magnetic Materials 412 (2016) 250–254

www.sciencedirect.com/science/journal/03048853
www.elsevier.com/locate/jmmm
http://dx.doi.org/10.1016/j.jmmm.2016.04.017
http://dx.doi.org/10.1016/j.jmmm.2016.04.017
http://dx.doi.org/10.1016/j.jmmm.2016.04.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2016.04.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2016.04.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2016.04.017&domain=pdf
http://dx.doi.org/10.1016/j.jmmm.2016.04.017


In the present work a thermodynamically consistent model is
proposed to account for the hysteretic properties of magnetization
and magnetostriction in magnetostrictive materials as an exten-
sion of the previous model [19] developed for the magnetic hys-
teresis. The proposed model is not intended to explain the mi-
croscopic mechanisms for the magneto-mechanical behavior. The
focus of this work is the phenomenological modeling of the
macroscopic material response in the framework of thermo-
dynamics. The formulation of the non-linear and dissipative nat-
ure is based on the thermodynamic consistency satisfying the first
and second laws of thermodynamics. The internal state variables
are introduced to characterize the non-equilibrium state from the
viewpoint of the irreversible thermodynamics. The magnetos-
trictive strain is described through its evolution rate deriving from
thermodynamic and dissipative potentials.

2. Constitutive theory

The first and second principles of thermodynamics are used to
derive the constitutive relations of magnetostrictive materials
undergoing magneto-mechanical loading; the first law states the
conservation of energy and the second law restricts the direction
of thermodynamic process. Moreover, the thermodynamic form-
alism is based on the postulations of two potentials characterizing
all thermodynamic properties of a material. One referred to as
thermodynamic potential is needed to mainly describe the re-
versible process, while the other is a dissipation potential needed
for the irreversible behavior. Following the methodology for re-
presentation of dissipative effects by Coleman and Gurtin [20], the
constitutive equations are finally completed in the form of evo-
lution rates for the state variables.

2.1. Thermodynamic framework

On the assumption of small deformation, the local form of the
first and second laws of thermodynamics can be written as fol-
lows:

ρ σ ε̇ = ⋅ ̇ + ̇ + − ∇⋅ ( )u rH B q: 1

ρ ̇ + − ≥ ( )s
T

r
T

q
div 0 2

where ρ is mass density, u the specific internal energy, r the in-
ternal heat source per unit mass, q the heat flux vector, s the
specific entropy, and T the temperature. H and B stand for the
magnetic field strength and magnetic flux density vectors, re-
spectively, and σ and ε for the second-order stress and strain
tensors. A superposed dot designates differentiation with respect
to time. The dot and colon represent the scalar products;

⋅ = H BH B i i and σ εσ ε =: ij ij. The combination of the first and second
laws through the elimination of the internal heat source results in
the following Clausius–Duhem inequality:

ρ σ ε( ̇ − ̇) + ⋅ ̇ + ̇ − ⋅∇ ≥ ( )Ts u
T

T
H B q: 0 3

The present work makes use of the specific Helmholtz free
energy as the thermodynamic potential. The free energy is defined
by

π = − ( )u Ts 4

Using Eqs. (3) and (4), the Clausius–Duhem inequality is re-
written as follows:

ρ πσ ε⋅ ̇ + ̇ − ( ̇ + ̇) − ⋅∇ ≥ ( )sT
T

T
H B q: 0 5

We assume the additive decomposition of the total magnetic
flux density:

= + ( )B B B 6rev irr

where Brev and Birr are the reversible and irreversible parts, re-
spectively. In addition, the total strain is decomposed into two
parts:

ε ε ε= + ( )7rev mag

where εrev is the reversible elastic strain and εmag denotes the
magnetostrictive strain. Conventionally, the magnetostrictive de-
formation is assumed to be incompressible, viz. ε( ) = ε =tr 0mag

ii
mag .

The constitutive theory follows the approaching scheme of Cole-
man and Gurtin who introduced the method of utilizing internal
state variables to account for dissipative effects in a physical sys-
tem, which results in the hysteresis phenomenon of the system
response. The thermodynamic potential is thus assumed to de-
pend on a set of internal state variables as well as the observable
state variables. Taking such a viewpoint, the dependence of the
Helmholtz free energy is assumed to be

( )π π ε ξ= ( )TB B, , , , 8
irr rev

1

where ξ1 is an internal state variable vector.
By substituting the time derivative of the free energy with re-

spect to its independent state variables into Eq. (5), the Clausius–
Duhem inequality is written as
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Each term in parentheses must vanish independently since the
inequality holds for arbitrary changes of the independent state
variables ( ε TB, ,rev ), leading to the relations

ρ π ρ π πσ
ε

= ∂
∂

= ∂
∂

= − ∂
∂ ( )s
T

H
B

, , 10rev

where H, σ and s are considered as thermodynamic forces asso-
ciated with B, εrev and T , respectively. By analogy, we may define a
thermodynamic force conjugate to the internal variable ξ1:

ρ π
ξ

= ∂
∂ ( )

R
11

1
1

For the isothermal condition the Helmholtz free energy is as-
sumed to be

( ) ( )ρπ
αμ ε ε ξ ξ= − ⋅ ⋅ − + + ⋅ ( )

−B B B B E
1
2

1
2

: :
2 12

irr irr rev rev1 1
1 1

where μ is the second-order tensor of the permeability, E is the
fourth-order tensor of the elastic modulus, α > 01 is a material
constant. The state laws for the reversible processes can be ob-
tained by making use of Eq. (10) as shown below:

μ σ ε= ⋅ = ( )−H B E, : 13rev rev1

where we have used the relation of = −B B Brev irr from Eq. (6). By
using Eq. (11), the following thermodynamic force is obtained,
such that:

α ξ= ( )R 141 1 1

The Clausius–Duhem inequality is finally reduced to
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