Contents lists available at ScienceDirect





journal homepage: www.mrijournal.com

## Breath-hold spin echosequence for assessing liver iron content

Justin Cheng-Ta Yang <sup>a,b,c,d</sup>, Meng-Yao Lu <sup>e</sup>, Fu-Shan Jaw <sup>a</sup>, Steven Shinn-Forng Peng <sup>b,d,\*</sup>, Tiffany Ting-Fang Shih <sup>b,d,f</sup>

<sup>a</sup> Institute of Biomedical Engineering, College of Engineering and the College of Medicine, National Taiwan University, Taipei, Taiwan

<sup>b</sup> Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan

<sup>c</sup> Department of Radiology, National Taiwan University Hospital, Chu-Tung Branch, Hsinchu, Taiwan

<sup>d</sup> Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan

<sup>e</sup> Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan

<sup>f</sup> Department of Medical Imaging, Taipei City Hospital, Taipei, Taiwan

## ARTICLE INFO

Article history: Received 18 November 2015 Revised 5 May 2016 Accepted 17 July 2016 Available online xxxx

Keywords: Liver iron concentration Magnetic resonance imaging Spin echo Thalassemia

## ABSTRACT

*Objective:* To compare a multiple breath-hold, multiecho, multiplanar spin-echo (BHMEMPSE) magnetic resonance (MR) sequence with a TR of 300 ms with a traditional multiecho, multiplanar spin-echo (MEMPSE) MR sequence for assessing liver iron content.

*Materials and methods:* This study was approved by the institutional review board; informed consent was waived. Liver R2 measurement was derived from the mono-exponential model by BHMEMPSE and MEMPSE MR sequences of a 1.5 T MR machine in 30 thalassemia patients (9men, 21women, aged 27.7  $\pm$  6.8 years). Hepatic iron contents were estimated using Ferriscan in all patients. The inter- and intra-observer agreement of the 2 MR sequences was also evaluated.

*Results:* MEMPSE R2 values significantly correlated with Ferriscan iron content values (r = 0.895, p < 0.001) and serum ferritin concentration (r = 0.661, p < 0.001). BHMEMPSE R2 values significantly correlated with Ferriscan values (r = 0.914, p < 0.001) and serum ferritin concentration (r = 0.608, p < 0.001). The distribution of MEMPSE R2 values against BHMEMPSE R2 values revealed an excellent linear relationship (r = 0.978, p < 0.001). The inter- and intra-observer agreement of the 2 MR sequences was excellent, with an interclass correlation coefficient exceeding 0.9. The distribution of Ferriscan against BHMEMPSE R2 values revealed a curvilinear relationship (r = 0.935, p < 0.001).

*Conclusions:* The BHMEMPSE sequence exhibited comparable estimation for assessing liver iron content, comparable repeatability and a shorter acquisition time compared with the MEMPSE sequence. The BHMEMPSE sequence can serve as an adjunctive sequence to assess liver iron content.

© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

Iron overload is a major complication of several hematological disorders, including thalassemia major. The body iron burden is a major determinant of clinical outcomes in iron-overloaded patients, irrespective of whether the iron overload results from increased dietary iron absorption, transfusion therapy, or both. Therefore, a non-invasive assessment of the body iron load is crucial for monitoring tissue iron concentrations. Liver iron concentration (LIC) can provide an estimate of total body iron burden in thalassemia patients [1].

Several methods are available for measuring LICs, including chemical assay of liver biopsy specimens, biomagnetic liver

susceptometry using superconducting quantum interference device (SQUID) technology [2,3], and magnetic resonance imaging (MRI) techniques [4–11]. Various MRI techniques have been described, including: (1) method measuring signal intensity ratio based on T2-weighted (spin-echo) [12] or T2\*-weighted (gradient-echo) [5,13] sequences,(2) relaxometry methods based on the measurement of R2 [6,10] or R2\* [9,14]. Iron-mediated signal decay can be characterized by a half-life time constant. The half life is T2 (spin-echo) or T2\* (gradient-echo). Sometimes the signal decay is described as a rate: R2 (spin-echo) or R2\* (gradient-echo). The relaxation rate is the reciprocal of the time constant; that is: R2 = 1000/T2, R2\* = 1000/T2\*. The factor of 1000 is used because R2 and R2\* are expressed in 1/s while T2 and T2\* are expressed in ms.

For measuring R2, the spin-density-projection-assisted (SDPA) method [6,15] (also known as FerriScan) is a widely used method. SDPA R2-MRI has been clinically proven to have high sensitivity and specificity for LIC measurement in clinical practice [6,15]. However,



<sup>\*</sup> Corresponding author at: Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan. Tel.: +886223562570; fax: +886223562811.

E-mail address: sfpeng@ntuh.gov.tw (S.S-F. Peng).

### Table 1

MR sequences in calibrated phantom study and human subjects.

|                          | MEMPSE             | BHMEMPSE            | Gradient-echo                               | MEMPSE (8TE)                 | FIESTA           |
|--------------------------|--------------------|---------------------|---------------------------------------------|------------------------------|------------------|
| TR (ms)                  | 1000               | 300                 | 28.3                                        | 1000                         | 4~5              |
| TE (ms)                  | 6, 9, 12, 15, 18   | 3, 5, 8, 12, 18, 30 | 1.8, 4.8, 7.7, 10.7, 13.7, 16.6, 19.6, 22.5 | 6, 9, 12, 15, 18, 21, 24, 27 | 1.8 ~ 2.5        |
| Flip angle (degree)      | -                  | -                   | 20                                          | -                            | 60               |
| Slice thickness (mm)     | 6                  | 10                  | 10                                          | 6                            | 6                |
| Space between slice (mm) | 5                  | 5                   | 0                                           | 5                            | 1                |
| Bandwidth (Hz)           | 41.67              | 62.5                | 62.5                                        | 41.67                        | 83.33            |
| Field of view (cm)       | 38                 | 48                  | 38                                          | 38                           | 38               |
| Matrix                   | $256 \times 192$   | 64 	imes 64         | $224 \times 128$                            | $256 \times 192$             | $320 \times 192$ |
| Slice number             | 11                 | 8                   | -                                           | -                            | 26               |
| Scanning time            | 24.5 $\pm$ 8.3 min | $3.8\pm0.6$ min     | -                                           | -                            | $24.1\pm2.6~s$   |

MEMPSE = multi-echo, multi-planar spin-echo sequence, BHMEMPSE = breath-hold, multi-echo, multi-planar spin-echo sequence, FIESTA = Fast Imaging Employing Steady-state Acquisition.

one limitation of the SDPA R2-MRI method is the time-consuming nature of this magnetic resonance (MR) sequence. Total scan time is approximately 30 min due to long repetition time [16]. A previous study by Pavitt [17] revealed that reducing repetition time from 2500 ms to 1000 ms exhibited no significant difference in LIC measurement. This 1000-ms multislice, single-spin echo sequence reduced total scan time to 20–30 min. In thalassemia patients with chronic liver disease, incorporating sequences for R2 measurement in routine MR pulse sequences places a heavy burden on the examination unit.

In this paper, we compare a new multiple breath-hold, multiecho, multiplanar spin-echo (BHMEMPSE) sequence with the 1000-ms multiecho, multiplanar spin-echo (MEMPSE) sequence for liver R2 measurement.

# 

**Fig. 1.** Liver R2 measurement in a 26-year-old man with thalassemia. The ROI analysis were performed by drawing a circle (white) in the right posterior lobe of liver in both MEMPSE sequence (a) and BHMEMPSE sequence (b). MEMPSE R2, BHMEMPSE R2 and Ferriscan value of the patient were 36 1/s, 39 1/s and 1.8 mg/g dw, respectively. His ferritin and ALT levels were 891 ng/ml and 8 IU/dL, respectively.

## 2. Materials and methods

## 2.1. Phantom study

Weighted amounts of ferric chloride (FeC1<sub>3</sub>) were dissolved in 30 ml distilled water (iron concentration 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1 and 2 mg Fe/g). In order to avoid the sediment of the ferric compound, HCl (99% HCl, Sigma-Aldrich, St. Louis, MO, USA) was added into each test tube to keep pH < 2.

Calibrated phantom tubes received MRI examinations using a 1.5-T scanner (Signa Magnetom; GE Medical Systems, Milwaukee, WI, USA). MEMPSE with 5 TEs, BHMEMPSE, gradient-echo (T2\*-weighted) and MEMPSE with 8 TEs (Table 1) were used to scan calibrated aqueous iron solutions with 10 times repetition. Comparison among MEMPSE, BHMEMPSE and gradient-echo sequences were made. Besides, MEMPSE with 5 TEs and 8TEs were compared as well.

## 2.2. Curve fitting models

Raw data of MEMPSE and BHMEMPSE sequences were analyzed by three different curve fitting models: mono-exponential, mono-exponential plus constant offset and bi-exponential curve fitting models. Comparison among three curve fitting models was made to determine the best fitting model.



**Fig. 2.** Phantom R2 measurement of MEMPSE sequence against different concentrations of FeCl<sub>3</sub>. Mono-exponential (red), mono-exponential plus constant offset (brown) and bi-exponential (green) curve fitting models were applied.

Download English Version:

# https://daneshyari.com/en/article/1806092

Download Persian Version:

https://daneshyari.com/article/1806092

Daneshyari.com