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Purpose: To develop a linear matrix representation of correlation between complex-valued (CV)
time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over
correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis.
Materials and methods: The standard in fMRI is to discard the phase before the statistical analysis of the
data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism
representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with
CV time-series data, rather than with the standard of MO data. AMATLAB simulation compares the Fisher-z
transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude
change in the time-series. The increased sensitivity of the complex-valued Fourier representation of
correlation is also demonstrated with experimental human data. Since the correlation description in the
temporal frequency domain is represented as a summation of second order temporal frequencies, the
correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal
frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four
voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor
cortex and the supplementary motor cortex.
Results: The simulation demonstrates the increased strength of CV correlations over MO correlations for
low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps
are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation
maps after spatial processing.
Conclusions: Including both magnitude and phase in the spatial correlation computations more accurately
defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to
preserve the signal of interest in fMRI data sets with high noise variance, and avoid excessive processing
induced correlation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In fMRI, the measured blood oxygen level dependent (BOLD)
signal to detect neural activity is spatially Fourier encoded [1,2]. The
BOLD fluctuations are measured as a complex-valued fMRI signal
over time in the spatial frequency domain, then the k-space readout
is reconstructed with the inverse Fourier transform (IFT). Before the
statistical analysis of the fMRI data, the phase portion of the data is
generally discarded, despite physiologically useful information
contained in the phase [3]. Previous research suggests that
phase-only change arises from large draining vessels [4], or proposes

methods to filter phase signal contributions from large vessels [4,5].
Although, other models support the notion that randomly oriented
vasculature yield phase change in fMRI studies [6,7]. It has been
previously demonstrated that modeling an fMRI time-series with
both magnitude and phase increases the power of the activation
statistics [8–11] over those from MO models. This manuscript
outlines a method to describe correlation between two time-series
with both magnitude and phase (equivalently real and imaginary),
through exploiting the linear relationship between the image
domain and spatial frequency domain. Traditionally both MO and
CV models require analysis in the image domain, however, analysis
within the frequency domain is also valuable. It has previously been
shown how complex-valued temporal frequencies contribute to the
correlations between voxels in the cerebral cortex for magnitu-
de-only non-task data [12]. Similarly, in this manuscript the spatial
correlation between complex-valued time series is described as a
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linear combination of second order voxel temporal frequencies. The
present study advances the frequency correlation description into a
linear matrix framework with an application to a complex-valued
simulation demonstrating the strength of the model at low
magnitude and phase contrast-to-noise ratio (CNR) values, as
well demonstrating its utility in experimental complex-valued
fMRI data.

During signal acquisition, unwanted image acquisition arti-
facts and physiological noise obscure the true underlying signal of
interest. To improve the signal-to-noise ratio (SNR), various
preprocessing operations, i.e. temporal frequency filtering or
magnitude image smoothing, are incorporated in the processing
and reconstruction pipeline, and physiologic noise sources are
commonly regressed out from the signal [13–16]. It is well
documented that the application of these operations induces
local spatial and temporal correlations into neural regions that
were previously uncorrelated [17–19]. The linear framework
developed in this manuscript also describes how signal processing
alters the structure of the spatial covariance matrix, such that
induced correlation is a result of increased overlapping frequency
content between voxels after processing. Signal processing will
alter the activated voxel's temporal frequency spectrums, by
spreading voxel task activated peaks temporally and spatially.
Correlationwill be induced between voxels as a result of increased
overlapping frequency content between the two voxel's Fourier
frequency spectrums. This notation for spatial correlation is
advantageous since various physiological signals are also confined
to specific frequency ranges. Respiratory and cardiac cycle
fluctuations are characterized around 0.2–0.3 Hz and 1 Hz in a
voxel's temporal frequency spectrum, although they are often
aliased to low frequencies in fMRI signal acquisition [13,20,21].
The summation notation of spatial correlation that is described
here, allows relative contributions to the correlation to be
quantified by segregating the natural partitions in a voxel's
temporal frequency spectrum. Compared to magnitude-only
correlations, applying this framework with complex-valued data
more accurately identifies regions of spatial correlation, and
reduces the false positives in correlation maps. This result is most
significant in low magnitude CNR data sets since including the
phase in the complex-valued correlation results in increased
sensitivity of identifying correlated regions.

2. Theory

A prow × pcol complex-valued k-space readout is reconstructed to
a single image with the discrete inverse Fourier transform (IFT).
With a real-valued isomorphism representation [22] of the Fourier
reconstruction operator, Ω, and the k-space readout in vector form,
st, an image vector, yt, for a single image time point, t, is
reconstructed as

yt ¼ Ωst : ð1Þ

Equivalently, with the forward Fourier Transform Ω−1 = Ω, the
k-space readout is written as

st ¼ Ωyt : ð2Þ

In Eqs. (1) and (2), the signal and image vectors are 2p × 1,
where p = prowpcol is the number of voxels, and the real parts are
stacked over the imaginary parts, so st = (sR’,sI’)’ and yt = (yR’,yI’)’.
The real parts in each vector are organized as sR = (sR1,…,sRp)’ and
yR = (yR1,…,yRp)’, and the imaginary parts in each vector are
organized as sI = (sI1,…,sIp)’ and yI = (yI1,…,yIp)’. To build up the

real-valued matrix framework, consider the representation of the
inverse Fourier reconstruction.

Ω ¼ ΩR −ΩI
ΩI ΩR:

� �

where ΩR and ΩI are constructed with the Kronecker product, ΩR =
[(ΩyR ⊗ ΩxR) − (ΩyI ⊗ ΩxI)]

and ΩI = [(ΩyR ⊗ ΩxI) + (ΩyI ⊗ ΩxR)]. The jkth element of the
pcol × pcol Fourier matrix Ωx is (Ωx)jk = w ð–pcol2 þ jÞð–pcol

2 þkÞ where j and k
have indexing values from 0 to pcol−1 with w = 1

N e
i2π=pcol for the IFT

and w = e–i2π/pcol for the forward Fourier transform (FT), [22].
To reconstruct images over n time repetitions (TRs), the complex-

valued spatial frequencies are represented in the real-valued 2pn × 1
vector s,witheachsuccessiveTRconcatenated to thevector.Ananalogous
explanation describes the organization of the real-valued image 2pn × 1
vector, y, which is reconstructed with the Kronecker product,

y ¼ In⊗Ωð Þs: ð3Þ

A 2pn × 2pn permutation matrix, P, reorders the elements of
vector y so the real-valued time-series 2pn × 1 vector v = Py is now
ordered by voxel rather than ordered by image. The voxel ordered
time-series is Fourier transformed into the temporal frequency
domain, with the 2n × 2n temporal forward Fourier transform (FT)
matrix,ΩT, as opposed to the 2p × 2p spatial Fourier operations. The
real-valued 2pn × 1 vector f consists of the temporal frequencies of
each voxel stacked upon the corresponding imaginary temporal
frequencies is represented,

f ¼ Ip⊗ΩT

� �
Py: ð4Þ

For voxel α, the 2n × 1 real-valued voxel time-series is denoted
vα, with real parts stacked over imaginary parts vα = (vαR’,vαI’)’ so
the real and imaginary parts in each vector are organized as vαR =
(vαR1,…,vαRn)’ and vαI = (vαI1,…,vαIn)', with a mean and covariance
structure of μRα and μIα., σ2

RαIn and σ2
IαIn.The corresponding

temporal frequencies for voxel α are denoted in the 2n × 1 vector
fα, where vα = ΩT fα and fα = ΩTvα, are organized similarly to the
time-series equivalent. With an analogous description of another
voxel β, the spatial covariance between the two voxels is simply
written, cov(vα, vβ) = (vα − μα)T(vβ – μβ)/(2n).

Assuming the time-series is demeaned, then the covariance
between two voxels in terms of temporal frequencies is represented
as,

cov vα ; vβ
� �

¼ vTαvβ
� �

= 2nð Þ ¼ ΩT f α
� �T ΩT f β

� �
¼ f Tα f β

� �
=4 ð5Þ

The spatial covariance in Eq. (5) is expanded to a p × p spatial
covariance matrix, Σ, such that the entry (α, β) in Σ represents the
spatial covariance between the two demeaned real-valued voxel
time-series of voxel α and voxel β. By defining D as the diagonal
matrix consisting of the diagonal elements of Σ, a p × p spatial
correlation matrix is written as,

R ¼ D−1=2 Σ D−1=2
: ð6Þ

By aggregating the second order temporal frequencies into
biologically meaningful or experimentally relevant bands, the
influence preprocessing steps have on each voxel temporal frequen-
cy spectrum can be quantitatively measured. In an fMRI study, the
frequency corresponding to the activation is considered when
dividing the spectrum into bands. To understand the contribution
each temporal frequency band yields to spatial correlation, the
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