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a b s t r a c t

The ground state of a quasi-one-dimensional interacting Bose gas confined by a harmonic plus Gaussian
dimple potential is studied within the variational approach and also Gross–Pitaevskii mean-field ap-
proximation. The effect of the superimposed dimple trap on the order parameter, the chemical and
effective potentials of the system is analyzed for repulsive and attractive two- as well as three-body
interactions between the particles. The results obtained from both methods show that the characteristics
of the trap such as the width and depth of the dimple affect the corresponding ground state properties of
the system in a qualitatively similar way to the repulsive and attractive interatomic interactions, re-
spectively.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the main research interests in the sizzling field of ul-
tracold gases is the study of low dimensionalities, where the ex-
periments clearly lead the way [1–3]. Low-dimensional systems
are also interesting from the theoretical viewpoint, since they give
rise to many interesting phenomena not manifested in higher di-
mensions, and provide exactly solvable models, particularly in the
quasi-one-dimensional case (quasi-1D) [4–9].

It has long been established that Bose–Einstein condensation
does not occur in interacting homogeneous 1D systems, either at
finite [10] or at zero temperature [11], due to the existence of long
wavelength and quantum fluctuations, respectively. On the other
hand, the presence of a trap potential may lead to Bose–Einstein
condensation in the weakly-interacting limit, changing the density
of states of the system at low energies [12–14].

For the 1D case, while the occurrence of Bose–Einstein con-
densate (BEC) depends on the presence of a trap potential, it is
understood that the character of the condensate is substantially
influenced by the form of the potential. Also, in such systems, the
interactions between the particles play a crucial role despite the
very dilute nature of these gases. The effect of atom–atom inter-
actions in these systems paves the way for many interesting
phenomena, e.g., the collapse of the condensate [15,16] or Tonks–
Girardeau gas [17], depending on the strength and the nature (i.e.,
repulsive or attractive) of two-body interactions which can be
controlled by frequently used Feshbach resonances technique

[18,19]. However, if a condensate of high atomic density is in
question, as in the case of atomic wave guides or atom chips, then
it is necessary to take into account the three-body interactions
between the particles, as well as the two-body ones. The con-
trollability of the three-body interaction independently of its two-
body counterpart further enriches the physical picture of the
corresponding systems [20–24].

Moreover, it is also known that some specific distortions in the
confining potential, such as the presence of a dimple, may increase
the phase-space density [25] and therefore affect the properties of
Bose–Einstein condensed phase [26–30].

Dimple potentials have been realized experimentally [31–33]
and have a variety of applications, including, e.g., the growth of
quasi-condensates on atom chips [34], the propagation of ultra-
slow optical pulse in atomic BEC [35], or the production of large
BECs [27]. In all these studies, the use of dimple potentials has
been shown to be a good strategy to reach quantum degeneracy
with many atoms in a short time and with a simple experimental
setup. In this respect, it is expected that a superimposed dimple
trap makes the three-body interactions between the particles
important due to its effect enhancing the density of the con-
densate as it is observed from the experiments [31–33]. Especially,
the most recent experiment of Stellmer et al. [36] shows clearly
this effect where a dimple potential helps the formation of a
condensate by leading to a great increase in the local atom density
without increasing the temperature of the system. Following this
recent experimental advent on dimple traps, Dutta and Mueller
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have investigated theoretically the effect of the dimple trap
parameters on the dynamics of a BEC [37].

Motivated by the above-mentioned recent advances on quasi-
1D systems and on dimple potentials, as well as the importance of
three-body interactions in high density BECs, in this paper we
examine the ground-state properties of a BEC with two- and
three-body interactions confined by a 1D harmonic plus Gaussian
dimple potential. For 1D quantum gases, although quantum fluc-
tuations are greatly enhanced and the effects of strong correlations
between the atoms become very important, the zero-temperature
properties of a weakly interacting Bose gas can be successfully
described within the framework of mean-field approximation, as
previously shown by several studies [38–41]. In a quasi-1D system,
where all degrees of freedom except for the longitudinal direction
are assumed to be frozen due to the presence of a tight transverse
confinement, an effective quintic term arises in the standard
Gross–Pitaevskii equation (GPE) with cubic nonlinearity as a de-
viation from the strictly 1D case [39,42,43]. This so-called cubic-
quintic (CQ) 1D GPE provides a good description of the system in
the presence of both two- and three-body interactions analog to
its counterpart in 3D [44]. Here it is important to note that GP
approximation is known to be exact in the thermodynamic limit
for N-1 [45–47] and as the number of particles deviates more
from this limit, the finite-size effects become more important in
the system that one should resort to other numerical approaches
(e.g., configuration interaction method [48,49], quantum Monte-
Carlo [50]) rather than the GP approach.

In the present work, we make use of the CQ GPE to study the
effect of the superimposed dimple potential on the ground state
properties, e.g., the order parameter, the chemical and effective
potentials, of the system considering two- and three-body inter-
actions, either repulsive or attractive, between the particles. To
that end, we have performed both variational and numerical cal-
culations. We have found that the effects of the width and depth of
the dimple on the corresponding properties of the system are in
analogy to those of repulsive and attractive interactions,
respectively.

The paper is organized as follows. In Section 2 we present our
model and method. The results we have obtained are discussed in
Section 3 and a brief summary is presented in Section 4.

2. Model and method

The harmonic plus dimple potential that we consider is mod-
eled via a combination of a 1D harmonic potential with a Gaussian
dimple potential:
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where zω is the trap frequency of the harmonic confinement in the
longitudinal direction, V0 is the depth (strength) of the dimple trap
located at z zD= , and ω determines the width of the dimple. Here
we assume a strong confinement along the transverse direction
whose trap frequency ω⊥ satisfies zω ω≫⊥ , and thus makes the
motion of atoms quasi-1D along the longitudinal direction. One
may then assume that the order parameter has the form
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where r( )Φ ⊥ is the ground state of the transverse harmonic po-
tentialV r( )r ⊥ . Therefore, the problem effectively reduces from three
to one dimension, and the order parameter in the z-direction z( )ϕ
satisfies a generalized 1D GPE with the CQ nonlinearity
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where m is the atomic mass, g D1 is the two-body interaction
strength describing the short range atom–atom interactions
through s-wave scattering length a (a 0> or a 0< for repulsive or
attractive interatomic interaction, respectively), the coefficient of
the quintic term (g g6 ln (4/3) /D1

2 ω= ℏ ⊥) governs the strength of the
three-body interaction in our model, and 0μ is the chemical po-
tential of the system. Here, the quintic term originates from the
coupling between the longitudinal and transverse dynamics of the
condensate [39,42], and can be neglected in the limit, g 0→ ,
where Eq. (3) reduces to a standard GPE with only two-body
interactions. The normalization condition for ϕ is

z dz( ) 1. (4)
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∞

By introducing lzψ ϕ= , x z l/ z= , and l/d zω ω= , where

l m/z zω= ℏ is the oscillator length in the z direction, as well as by
setting z 0D = , Eq. (3) can be re-written in dimensionless form as
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with the dimensionless quantities g l2 /D z z1λ ω= ℏ , V V2 /d z0 ω= ℏ ,
(3 ln (4/3) / )zε ω ω= − ⊥ and 2 / z0μ μ ω= ℏ . Here, the three-body in-

teractions are repulsive for 0ε > and are attractive for 0ε < .
In the presence of two- and three-body interactions, the par-

ticles in the system are subjected to the following effective po-
tential:

( )V x x V e( ) . (6)eff d
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To solve Eq. (5), we will use two different approaches given as
follows.

2.1. Variational approach

If Eq. (5) is multiplied by ψ and integrated over the whole
space, one can obtain the following expression for the chemical
potential:
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Similarly, the total energy of the system is expressed by
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The trial Gaussian wave function that we use in our variational
analysis is
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where α is the dimensionless variational parameter. The root mean
square radius, xrms, is a function of α given below
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and the variational central density reads
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In order to obtain chemical potential in terms of α, we insert Eq.
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