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a b s t r a c t

We study for the first time the transverse shifts of a Gaussian beam reflected from a uniaxially
anisotropic chiral (UAC) slab, where the chirality appears only in one direction and the host medium is a
uniaxial crystal or an electric plasma. The results indicate that the transverse shifts are closely related to
the propagation behaviors of the eigenwaves in the slab. Specifically, when one or both of the
eigenwaves are totally reflected at the second interface of the slab, the spatial transverse shift becomes
resonances but is not enhanced; when one eigenwave is totally reflected at the first interface and the
other is transmitted at the second interface, the larger and negative transverse shifts can be obtained.
The propagation behaviors of the eigenwaves in the UAC slab provide more abundant information about
the transverse shifts than in a single interface structure.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is known that a bound light beam experiences transverse
shifts on reflection and transmission at a dielectric interface,
which differs from the geometric-optics prediction. There exist
two types of transverse shifts, i.e., the spatial transverse shift (STS)
and the angular transverse shift (ATS) [1].

The STS occurs in the direction perpendicular to the plane of
incidence. In the case of total reflection, it is usually called the
Imbert-Fedorov shift [2]. When the incident beam is linearly
polarized, the STS is also regarded as the spin Hall effect of light
(SHEL) [3–7], which is, in essence, the split of a linearly polarized
beam of light into its two right- and left-circularly polarized
components (or spin components). The effect is, albeit very tiny,
detectable with the current state-of-the-art measure technique and
can find its potential applications in metrology and (bio)sensor.

The STS has been discussed by use of different methods.
Physically, the most satisfying approach may utilize the fundamental
law of conservation of angular momentum [6–9]. Based on the
Noether's theorem, the total (spin and orbital) angular momentum
must be conserved along the axis of symmetry of the system which

is, for an obliquely incident beam on a planar optical interface, the
normal to the interface. To conserve total angular momentum, the
centroids of the reflected and transmitted components of an
incident polarized beam undergo the shifts along the direction
perpendicular to the plane of incidence. A more typical method to
determine the STS consists in decomposing the incident, reflected,
and transmitted beams of finite cross section into their plane wave
constituents and applying the Fresnel relations to the s and p
components of the individual plane waves. The spatial dependence
of the reflected and transmitted beams is retrieved by summing over
all partial plane waves which can be done analytically by using the
paraxial approximation [3,10–13].

The ATS appears when the incident beam is elliptically polar-
ized, because in the case the reflection (transmission) coefficients
of the s- and p-polarized plane wave are different. The expression
for such an ATS of the reflected beam has been obtained by
Nasalski [14]. Bliokh et al. [7] have performed explicit calculations
of such ATSs for both reflected and transmitted beams. The ATS
also appears when the intensity distribution inside the incident
beam is of no axial symmetry, that is, this distribution has an
antisymmetric part relative to the plane of incidence as well as to
the plane perpendicular to the former, because in the case the
reflection (transmission) coefficients of the plane wave depend on
the angle of incidence. Such ATSs of the reflected and transmitted
beams have been discussed in Refs. [15–17].
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Clearly, the reflection and the transmission coefficients have a
great impact on the transverse shifts, while the reflection and the
transmission coefficients usually depend on the electromagnetic
parameters of materials constituting the interface, such as the
permittivity and the permeability. Therefore, a number of studies
have been performed for various interface circumstances, including
air–glass interface [3,18], metamaterial interfaces [5,19], isotropic–
uniaxial interfaces [20,21], isotropic–chiral [22], anisotropic inter-
faces [23–25], etc. However, so far, almost all the studies of the
transverse shifts have only focused on a single dielectric interface,
viz., the interface between two semi-infinite media. The report has
been relatively scant on the transverse shifts of a beam reflected
on a slab or a multilayered structure. Actually, the two interfaces of
a slab structure behave like the mirrors of a Fabry–Perot-type
cavity to provide multiple reflections and interference effects;
meanwhile, the slab structure act as a waveguide to offer wave-
guide modes, which might affect the properties of the transverse
shifts. In addition, the structured parameters of a slab affect the
transverse shifts as well. More importantly, a slab structure has
potential applications in thin film metrology and biochemical
sensors. A chiral medium can possesses artificially tunable elec-
tromagnetic parameters which are not realized in a conventional
isotropic medium because it can be fabricated artificially by using
miniature wire spirals or conducting springs, which provide
additional interaction of electric and magnetic fields inside it.
Recently, a uniaxially anisotropic chiral medium has been inves-
tigated [26], where the chirality appears only in one direction and
the host medium is a uniaxial crystal or an electric plasma. Owing
to its flexibility in design, such a uniaxially anisotropic chiral (UAC)
slab might be a desirable candidate in the control of the transverse
shifts.

The organization of this paper is as follows. In Section 2, using
an eigenvalue method, we derive the reflection matrix of the
electromagnetic wave on the UAC slab within the framework of
the 4�4 matrix. With the reflection matrix, we give the expres-
sions for the STS and the ATS. In Section 3, we examine the effects
of the propagation behaviors of the two eigenwaves in the slab on
the transverse shifts, and discuss numerically the dependences of
the transverse shifts on the angle of incidence for three cases with
different electromagnetic parameters, which provide some inter-
esting electromagnetic properties. Finally, in Section 4 the main
conclusions are summarized.

2. Basic theory

2.1. The reflection matrix

In a general anisotropic or chiral medium s and p waves are not
the eigenmodes of Maxwell's equations; hence we must use the
so-called reflection matrix to describe the reflection properties of a
wave. Below, we derive the reflection matrix.

Assuming a Gaussian beam of angular frequency ω impinges
from an isotropic medium with refractive index ni on a UAC slab
occupying the 0rzrL region, as sketched in Fig. 1(a). Clearly, the
z-axis is normal to the interface. Let O�xz be the plane of incidence,
and then the fields can be expressed as F¼ FðzÞeiðkxx�ωtÞ, where
F represents the electric field E or the magnetic field H; kx ¼ k0ni

sin θ; k0 ¼ω=c and θ is the angle of incidence of the central plane-
wave component of the Gaussian beam. If the chiral particles in the
UAC slab are aligned with the z-axis, the constituent relations which
describe the electric displacement D and the magnetic induction B
in the slab can be written as [26]

D¼ ε0ð2ε UEþ iγẑẑUη0HÞ; ð1aÞ

B¼ ffiffiffiffiffiffiffiffiffiffi
ε0μ0

p ð2μ Uη0H� iγẑẑUEÞ; ð1bÞ
where η0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
is the wave impedance of vacuum and γ is the

chirality parameter. For a nonmagnetic uniaxial host medium, the
permeability tensor2μ is the 3�3 identity matrix, and the permit-
tivity tensor2ε can be cast in the form

2ε ¼
εt 0 0
0 εt 0
0 0 εz

0
B@

1
CA; ð2Þ

where εt and εz are the permittivity in the transversal and the
longitudinal directions, respectively, and they can be either positive
or negative, depending on the host medium.

According to the continuity of the tangential field components
across the boundary, we can introduce a four-component column
vector ψ ðzÞ ¼ ðEx; Ey; η0Hx; η0HyÞT , where the superscript ‘T’
stands for the transpose operator. From Maxwell's equations and
Eqs. (1) and (2), it follows that ψ obeys the matrix ordinary
differential equation [22]

dψ ðzÞ
dz

¼ ik0Mψ ðzÞ; ð3Þ

where M is a 4�4 matrix in the form

M¼

0 � iγa 0 1�a
0 0 �1 0
0 aεz�εt 0 � iγa
εt 0 0 0

1
CCCA

0
BBB@ ; ð4Þ

with a¼ n2
i sin

2θ=ðεz�γ2Þ.
The general solution to Eq. (3) is straightforward and expres-

sible as [22,27,28]

ψ ðzÞ ¼ Veik0Qzψ0; ð5Þ
where ψ0 is a 4�1 constant column vector determined by the
boundary conditions; Q and V are the 4�4 matrices that consist of
the four eigenvalues and eigenvectors of M, respectively. For the
geometry shown in Fig. 1(a), we arrange the eigenvalues and
eigenvectors such that the first two columns correspond to the
reflected waves and the last two columns to the transmitted
waves. Then, we have [22]

Q ¼
�Q4 O

O Q4

 !
; V ¼

V1 V2

V3 V4

 !
; ð6Þ
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Fig. 1. (a) Schematic of a light beam reflection on the UAC slab. (b) An illustration of
the transverse shifts. Here, the dashed line with arrow denotes the reflected beam
predicted by the geometric optics, and the solid line with arrow stands for the
practical reflected beam. yr, Θr and Y ¼ yrþℓΘr represent the STS, the ATS and the
total transverse shift of a reflected beam, respectively. In this figure, both yr and Θr

are positive.
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