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a b s t r a c t

In this paper the features of one-electron states in a circular cylindrical sector are investigated. The finite
thickness of the cylinder and the spatial expansion of the barrier, which runs along the cylinder
generatrix, are taken into account. In the framework of the proposed model the distribution of electrons
in the quantum states, as well as features of interband absorption of electromagnetic radiation, is
theoretically investigated.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction: statement of the problem

Recently a considerable interest is observed in study of the physical
properties of two-dimensional electron gas on the curved surface of a
semiconductor. Theoretical studies discussed models like quantum
cylinder [1–3], quantum sphere [4–6] and nanotubes of different
geometries (see e.g. Refs. [7–9]). Also, experiments have been con-
ducted on faceted surfaces of GaAs=GaAlAs structures containing two-
dimensional electron gas [10,11]. It is worth highlighting the success of
relatively recent technology which allows separating a thin layer of
stressed GaAs=GaAlAs, GaAs=InxGa1� xAs heterojunction along with
two-dimensional electron gas, using special techniques (lift-off), and to
bent at any angle up to π order (see e.g. Refs. [12,13]). Currently the
spectrum of curved two-dimensional electron gas, its plasma modes,
magnetotransport (see Refs. [2,14,15] and references therein), and
the optical properties (see e.g. Ref. [9]) are theoretically studied in
sufficient details.

However, in existing theoretical studies of the physical properties
of cylindrical nanolayers the following limitations of the problem
statement can be observed. First, usually it is assumed that the
charge carriers are localized on the surface of nanolayers (see e.g.

Refs. [1,2,7–10]); thus the finite thickness of the sample is neglected.
While describing a wide range of phenomena, this approach is
mostly justified, but as a result the unique properties of a quantum
cylinder are lost (i.e. the properties combining the characteristic
physical features of both a quantum wire and quantum film [16]).

Second, the additional potential resulting from the growth of
nanostructure is usually modeled either by straight δ-barrier
(passing along the cylinder) [14], or an extended spiral δ-barrier
[7–9], which means that they neglect the actually existing spatial
expansion of the potential barrier. Note that in paper [14] the
ballistic transport in a sector of a circular cylinder is studied but
under a condition when the finiteness of barrier's size has small
influence on electronic states. In this paper we propose a more
realistic model of a circular tube sector. This model allows us to
take into account both the finiteness of the cylinder’s thickness
and the spatial expansion of the barrier.

The model under study is a composition of materials B=A=B in a
form of a circular cylindrical layer with height L, inner and outer
radii R1 and R2 respectively and with thickness of the layer
d¼ R2�R1 (A is the circular cylindrical nanolayer and B is the
surrounding environment). The additional barrier that limits the
azimuthal motion of the electrons is directed along the cylinder's
generatrix and has an angular width of 2φ0 (Fig. 1).

We will assume that the band characteristics of the constituent
elements of the B=A=B composition are such that the limiting
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potentials along radial and azimuthal directions can be approxi-
mated by an infinitely deep potential well with sufficient accuracy

Vðρ;φÞ ¼
0; R1oρoR2; φ0oφo2π�φ0

1 ρrR1; ρZR2; φ0ZφZ2π�φ0

(
ð1Þ

Within the proposed model, the spectrum of an electron, the
distribution of electrons in the quantum states as well as the
specific features of intra-band absorption of electromagnetic
radiation was theoretically studied.

2. The specific features of the electronic states of the
nanosystem

We will present the enveloping wave function of the electrons
with the potential of interaction (1) as

Ψ totðρ;φ; zÞ ¼Ψ ðρÞΦðφÞ
ffiffiffi
1
L

r
expðikzÞ ð2Þ

Bearing in mind the boundary conditions

Ψ ðR1Þ ¼Ψ ðR2Þ ¼ 0 and Φðφ0Þ ¼Φð2π�φ0Þ ¼ 0:

After solving the Schrodinger equation we obtain the following
expressions for Ψ ðρÞ and ΦðφÞ:
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ΦðφÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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Accordingly for the energy spectrum we will obtain

E¼ ℏ2

2mnd2
ηðn; νÞþℏ2k2z

2mn
ð5Þ

In formulas (3)–(5) the following notations are used. JνðηxÞ and
NνðηxÞ are Bessel's and Neumann's functions of νth order, respec-
tively, where ν¼ πm

2ðπ�φ0Þ.
For the η parameter which determines the energy of the

transverse motion, a transcendental equation is obtained
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where n is the number of the root of Eq. (6).

Note that the states of azimuthal motion are symmetrically
relative to the X axis (the equidistant points from the edges of the
barrier are physically equivalent) so that the azimuthal wave
function (4) has certain parity relative to φ-2π�φ conversion. In
relation to the specified conversion the wave functions with
quantum numbers m¼ 2;4;… are odd, and the states with quan-
tum numbersm¼ 1;3;… are even. In general, for arbitrary relations
between geometric quantities R1, R2 and φ0, the normalization
factor Cρ of the radial wave function, and the parameter η can be
determined only by numerical methods.

Let us consider a particular case of practical interest. Suppose
that for sufficiently thin nanotubes, when nanotube's thickness is
much smaller than its radius, the following relation is true:

β¼ ð4ν2�1Þd
8R1

ffiffiffi
η

p ⪡1 ð7Þ

Then, using Hankel's asymptotic expansions for Bessel and
Neumann functions, we obtain the following equation for the
wave function (e.g. [17]):

Ψn;m;kðρ;φ; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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dL π�φ0
� �

s
sin πn

d ðρ�R1Þffiffiffi
ρ

p

expðikzÞU
sin πmðπ�φÞ

2ðπ�φ0Þ ; m¼ 72; 74;…

cos πmðπ�φÞ
2ðπ�φ0Þ ; m¼ 71; 73;…

8<
: ð8Þ

Aiming to solve the transcendental equation (6) we will use a
less strict assumption

ð4ν2�1Þd2
8R1R2

ffiffiffi
η

p ⪡1 ð9Þ

Then, from Eq. (6), for the energy spectrum of electrons we will
have

E¼ ε1n2þε2 m2� π�φ0

π

� �2� �
þℏ2k2z
2mn

ð10Þ

where ε1 ¼ ℏ2π2=2mnd2 and ε2 ¼ ℏ2π2=2mnl20 are the energy quanta
of radial and azimuthal movements respectively, l0 ¼ 2 π�φ0

� �
R is

the length of the arc of the region of electrons’ allowed motion,
R0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
is the effective radius of the particle localization in the

radial direction and n¼ 1;2;… is the radial quantum number.
From expressions (9) and (10) it follows that the energy of the

electron's azimuthal motion is much smaller than the energy of its
radial motion; hence the energy spectrum of the nanosystem
consists of separate series. Each series consists of a basic degree of
spatial quantization with certain quantum number n (radial
quantization) above which the energy levels with the quantum
numbers m¼ 1;2;… are located (azimuthal quantization).

At the end of the section we will discuss the applicability of the
infinitely deep potential well model and provide numerical esti-
mates. Obviously, the choice of the infinitely deep well model is
justified if the forbidden bands of contacting materials overlap,
and the magnitude of the energy band discontinuities Ve is more
than the energy of the particles’ size quantization in the layer.

Double heterojunctions Ga1� xAlxAs=GaAs, (x¼ 0:42; Ve ¼
0:36 eV) and GaxIn1�xAs=AlyIn1�yAs (x¼ 0:47; y¼ 0:48; Ve ¼
0:52 eV) [18] satisfy these conditions with sufficient accuracy. In
particular, if considering that many physical properties of the sample
(filling degree of levels, dependence of frequency on the absorption
coefficient) are determined by the relative difference of energy
between the first two levels Δε12=ε1, then estimates show that for
the first heterojunction Ga1� xAlxAs=GaAs we get Δε12=ε1 � 2:823 for
d¼ 80 Å and Δε12=ε1 � 2:903 for d¼ 100 Å. For comparison, recall
that for the infinitely deep well model Δε12=ε1 ¼ 3 and does not
depend on the thickness of the well.

Fig. 1. The shape of nanostructure and orientation of the vectors A
!

0 and n0 for
different cases of incidence of light wave (see Section 4).
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