
Study on permittivity of composites with core–shell particle

Xiangxuan Liu, Youpeng Wu �, Chun Wu, Zeyang Zhang

NO.503 Faculty, Xi’an Research Institute of High Technology, Xi’an 710025, China

a r t i c l e i n f o

Article history:

Received 1 December 2009

Received in revised form

15 January 2010

Accepted 15 January 2010

Keywords:

Composite

Effective permittivity

Core–shell particle

Interface

a b s t r a c t

An effective permittivity model of composite with interfacial shell is established. The concentric core–

shell ellipsoidal particle randomly mixed with matrix is replaced by solid particle mixed with the same

matrix, and the equivalent solid particle has the same radius as the original coating shell. Based on the

effective medium theory, the formula for the effective permittivity of two-phase composite with

interface is derived, then a simple self-consistent method is applied to modify the formula. With the

modified formula, the influence of the structure parameter, the permittivity of the shell, the shape and

the volume content of the core on the effective permittivity are investigated. The theoretical results on

the effective permittivity of polystyrene–barium titanate composites with interfaces are in agreement

with the experimental data.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The optical, electrical and magnetic properties of two-phase
randomly mixed composite are closely related to its dielectric
property. Therefore extensively experimental and theoretical
research has continuously gone into studying the macroscopic
electrical conductivity and the permittivity of the binary compo-
site [1–3]. During the investigation, the layers between two
components are often regarded as an ideal contact. In other
words, the interfaces are considered as nonexistent [4,5]. How-
ever, in fact, there exist interfaces between the scattered particles
and the host matrix due to diffusion, penetration, combination,
etc. The dielectric properties of the interfacial coating shells
(the third component) are different from both the scattered
particle and the host matrix. The size of scattered particles in
nano-composite is so small that the total interfacial area is large.
Therefore, it is more significant to investigate three-phase
composite than two-phase composite.

This paper presents an equivalent method to investigate the
effective permittivity of a composite system. Considering the
interfaces between two components, a new complex model of
permittivity of two-phase composites is established, and then an
equivalent method is utilized to simplify a three-phase compo-
site system to a two-phase composite system. On the basis of
the average polarization theory and Maxwell–Garnett theory, the
forecasting formula for the effective permittivity of two-phase
composite with interfacial shell is presented. Considering the
interaction of particles, a single self-consistent method is applied

to modify this formula. According to the proposed formula, the
influence of the structure parameter, the permittivity of the shell,
the shape and the volume content of the core on the effective
permittivity are investigated. The theoretical results on dielectric
properties of polystyrene–barium titanate composite with inter-
facial shell are in good agreement with experimental data. The
achieved conclusions can provide theoretical guidance for the
design of core–shell structure composites to optimize some
desired electromagnetic properties.

2. The effective theory of composites with core–shell particles

2.1. The equivalency to core–shell spherical particles

A two-phase composite is investigated in which ellipsoidal
particles with interfacial shells are randomly embedded in a
homogeneous matrix. Combining the interfacial shell and the
filler particle can be regarded as a ‘‘complex particle’’. Therefore,
the three-phase random composite system can be regarded as the
complex particles embedded in the matrix. For simplicity, the
permittivity is assumed to be unchangeable inside the interfacial
layer. Usually, the scattered particles can be considered as
spherical particles. We postulate that R1 and R2 are the radius of
core with permittivity e1 and shell with permittivity e2 of
the complex particle, respectively. The thickness of the shell is
t=R2–R1, and the permittivity of the matrix is em. Under quasi-
static approximation, when an electromagnetic field E0 is incident
perpendicularly to the complex particle, the electric potential in
each component in composite is given by the Laplace equation:

fc ¼�AE0r cos y; roR1 ð1Þ
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DR3
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� �
cosy; r4R2 ð3Þ

Coefficients A, B, C and D are determined by the boundary
conditions, respectively. As shown in Eq. (3), the outer electric
potential contains two parts: one is the contribution of outfield
and the second can be considered as the contribution of the
electrical dipole moment of medium sphere. The overall electrical
dipole moment of the spherical particle with interfacial shell is
calculated through the electric potential generated by the
electrical dipole moment in the space [3]:

p
,
¼

ge1�em

ge1þ2em
4pemR3

2E
,

0 ð4Þ

where

g¼ bð1þ2bÞþ2abð1�bÞ
ð1þ2bÞ�að1�bÞ

and a¼ R3
1=R3

2 are called equivalent coefficient and structure
parameter, respectively. b¼ e2=e1.

Solid spherical particles with permittivity e1 and radius R1

embedding in the same homogeneous matrix can be made up of
another composite. Illuminated perpendicularly by electromag-
netic field E

,

0, the overall electrical dipole moment of the solid
particle is calculated with the following formula:

p
,
¼

e1�em

e1þ2em
4pemR3

1E
,

0 ð5Þ

The comparison of Eq. (4) and Eq. (5) shows that the difference
in the two equations is just replacing ge1 and R2 in Eq. (4) to e1 and
R1 in Eq. (5). The equivalent permittivity of the spherical particle
with interfacial shell is

ec ¼
bð1þ2bÞþ2abð1�bÞ
ð1þ2bÞ�að1�bÞ e1 ¼ ge1 ð6Þ

Therefore a spherical particle with interface equates another
spherical particle without interface, and this leads to a result
where the system can be replaced by solid sphere with equivalent
permittivity ge1 and equivalent radius R2 mixed with the same
matrix. Consequently, the system is simplified from trinary
components to binary components.

2.2. The equivalency to core–shell ellipsoidal particles

The equivalent thought mentioned above was popularized to
apply it to the composite system filled with coated ellipsoidal
particles. It is supposed that the thickness of the shell is fixed and
that e1 and e2 are the permittivity of core and shell of the complex
ellipsoidal particle, respectively. Similarly, the core–shell ellipsoi-
dal particle can also be replaced by a solid ellipsoidal particle
mixed with the same matrix. The equivalent solid particle has a
semi-radii equal to the original coating shell, and the equivalent
permittivity is

ec;kk ¼
b2
ð1�Lc;kÞð1�aÞþb½Lc;kþð1�Lc;kÞa�
b½ð1�Lc;kÞþLc;ka�þLc;kð1�aÞ

e1 ¼ gke1 ð7Þ

where

gk ¼ b
bð1�LkÞð1�aÞþ½Lkþð1�LkÞa�
b½ð1�LkÞþLka�þLkð1�aÞ

and a¼ ðabcÞ=½ðaþtÞðbþtÞðcþtÞ� represent equivalent coefficient
and structure parameter of ellipsoidal particle; b=e2/e1; a, b, and c

are noted as the semi-radii, and t is the thickness of interfacial
shell. Lc,k is the depolarization factor of the particle along the

k-axis (k=x, y, z). The equivalent permittivity of the equivalent
particle is anisotropic owing to different equivalent coefficient
induced by polarization.

2.3. The effective permittivity of composites with core–shell particles

The effective medium theory and the Maxwell–Garnett theory
are usually regarded as a convenient method to deal with the
linear response of such a homogeneous composite system
according to its microstructure [5–8]. Considering the probability
of the orientation of the particles in the composite random, the
effective permittivity of the composite with single shape
distribution is derived according to the average polarization
theory [8–10]:

X
k ¼ x;y;z

V
e1;kk�eeff

eeff þL1;kðe1;kk�eeff Þ
þð1�VÞ

em;kk�eeff

eeff þLm;kðem;kk�eeff Þ

� �
¼ 0 ð8Þ

where V and 1–V are the volume fractions of particles and matrix,
respectively; eeff is the effective permittivity of composite; e1,kk

and em,kk are the permittivity of filler particle and the matrix
particle along the k-axis (k=x, y, z), respectively; and L1,k and Lm k

are the depolarization factors of the filler particle and the matrix
particle along the k-axis, respectively.

For simplicity, it is assumed that all the matrix particles are
balls and all the filler particles are the same rotational elliptical
particles with semi-radii a, b, and c (a=b). As L1,x=L1,y=(1–L1,y)/2,
Eq. (8) can be simplified to the following equation:

9ð1�VÞ
em�eeff

emþ2eeff
þV

e1;zz�eeff

eeff þL1;zðe1;zz�eeff Þ
þ

4ðe1;xx�eeff Þ

2eeff þð1�L1;zÞðe1;xx�eeff Þ

� �
¼ 0

ð9Þ

The effective permittivity of composite is given by Eq. (9) when
only dipole interactions are present. For regular arrays this case
occurs in the limit of low volume loading. However, higher
multipole interactions become significant when particles ap-
proach contact, so Eq. (9) is inapplicable in regular arrays at high
volume filling. In random or disordered distributions close
encounters can occur at any volume filling, so higher multipole
corrections are necessarily considered in disordered medium even
at low volume filling. Furthermore, the higher multipole interac-
tions intensify rapidly on enhancing the volume fraction of filler
particles. In order to take the higher multipole interactions into
account, we give a set of permittivity (eb

1, eb
m) to replace the real

permittivity (e1, em). The set of permittivity (eb
1, eb

m) has something
to do with permittivity (e1, em) and the shape of the particles.
Based on the Maxwell–Garnett theory and the relation between
two distinct topological structures (symmetry structure and
dissymmetry structure) [10], eb

1 and eb
m can be expressed as

eb
1 ¼

2V

3�V
e1; eb

m ¼
2ð1�VÞ

2þV
em ð10Þ

Substituting Eq. (10) into Eq. (9), we obtain the equation for
the effective permittivity of two-phase randomly mixed compo-
site:

9ð1�VÞ
eb

m�eeff

eb
mþ2eeff

þV
eb

1;zz�eeff

eeff þL1;zðeb
1;zz�eeff Þ

þ
4ðeb

1;xx�eeff Þ

2eeff þð1�L1;zÞðeb
1;xx�eeff Þ

" #
¼ 0

ð11Þ

The following step investigates the composite containing core–
shell ellipsoidal particles randomly distributed in a homogeneous
matrix. According to the equivalent method, only by substituting
Eq. (7) into Eq. (9), we can get the equation for effective
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