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a b s t r a c t

The local binary pattern with H function (H-LBP) technique enables fast and efficient edge extraction in
digital radiography. In this paper, we reformulate the model of H-LBP and propose a novel sparsity-based
shrinkage approach, in which the threshold can be adapted to the data sparsity. Using this model, we
upgrade fast H-LBP framework and apply it to real digital radiography. The experiments show that the
method improved using the new shrinkage approach can avoid elaborately artificial modulation of
parameters and possess greater robustness in edge extraction compared with the other current methods
without increasing processing time.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

As an important imaging postprocessing technique, edge ex-
traction has been widely used in nondestructive testing techniques
such as computed tomography (CT) [1,2] and digital radiography
(DR) [3]. Because it is required to provide prior visual knowledge
of imaged object features [4,5], the speed and efficiency of edge
extraction are of primary concerned; however, it is also necessary
to reduce the dependence on the parameters to avoid elaborate
manual adjustment in real applications.

Benefited from its low computational complexity and high
sensitivity to details, local binary pattern (LBP) [6,7] has been used
in many applications such as recognition [8,9], estimation [10],
detection [11,13] and segmentation [12]. However, these ad-
vantages also make LBP unable to avoid the influence of imaging
noise. To address this problem, a novel counting scheme with a
sigmoid function is introduced into LBP in [14], and an effective
edge extraction method, i.e., H-LBP, is presented. Furthermore, [15]
verifies that H-LBP is equivalent in function to the point-wise
hard-shrinkage operation, where the threshold for each point is
determined by the counting scheme of H-LBP. Accordingly, an
accelerated method with low computational complexity, i.e., AH-
LBP, is provided in [15]. However, when applying either H-LBP or

AH-LBP to real 16-bit DCM format images, the related thresholds
for hard-shrinkage must be artificially modulated to obtain opti-
mal results for edge extraction, which inevitably affects these
methods’ feasibility and practicality in real applications.

Motivated by these works, we reformulate H-LBP model and pro-
pose a novel sparsity-based shrinkage approach, specifically of which
the thresholding operation for each point depends on not only the
local count scheme as in [14,15] but also the sparsity of the global area.
Consequently, we use the approach to improve and present an up-
graded H-LBP-based edge extraction method, herein denoted as SS-
LBP. Due to the robustness of the sparsity-based shrinkage approach in
real applications, SS-LBP possesses low computational complexity and
avoids elaborately artificial modulation of parameters. Experiments on
real radiographic images demonstrate its practical performance being
superior to that of other H-LBP-based methods.

The remainder of this paper is organized as follows. In Section
2, we shall investigate LBP and present a description of our
method and its corresponding algorithm. In Section 3, several
experimental results on real radiographic images will be illu-
strated. Finally, in Section 4, some conclusions will be drawn.

2. Method description

2.1. LBP-based edge extraction methods

As an efficient and powerful tool for texture extraction and
classification in digital images, LBP uses a concise method to
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describe the differences between the center pixel and its neigh-
boring pixels. Here, we consider the neighboring area of a given
pixel as an image patch of size 3�3 pixels, that is, = [ ] ∈ ×U ui j,

3 3,
ordered lexicographically as a column vector μ = ( ) ∈ ×UVec 9 1.
Let us denote ei as a 9�1 column vector, of which the i-th element
equals 1 and the 5-th element equals �1. Then, we can define a
difference matrix ≔[ ] ×D ei 1 8. Therefore, the LBP value of the cen-
tered pixel u2,2 can be computed through a scalar product of two
vectors as follows:

κ μ κ≔ = ( ) = … ( )
⎡⎣ ⎤⎦B B DSLBP , , with , 2 , 2 , 2 , , 2 , 1u

T T0 1 2 7
2,2

where · ·, denotes the scalar product and (·) = [ (·) + ]S sgn 1 /2 is a
point-wise binary operator. Here, (·)sgn is a signum function with
assumed ( ) =sgn 0 1. LBP performs well in rapid and efficient tex-
ture extraction but lacks noise suppression.

To complement this, H-LBP in [14] proposes an elaborate
shrinkage operation with a local threshold achieved via a counting
scheme, i.e., τ = B 1, , where 1 is a column vector of all 1 s. In
Detail for u2,2, the H-LBP value can be computed as

β β μ κ− ≔ ( ( )) = ( ) ( )τ ϵ DSH LBP , with , . 2u
T

2,2

Here, both (·)τ and (·)ϵ are hard-shrinkage operators, where
β( )τ equals �1 if τ¼0 or 8 and β otherwise. In addition, (·)ϵ is a

point-wise operator that satisfies π ε( ) = + · ( − )ϵ x x1/2 1/ arctan /
if τ≥x and 0 otherwise. By comparing (2) with (1), H-LBP is
found to significantly increase mathematical modulation to dif-
ferentiate features and textures from the extracted details.
Nevertheless, some additional computations are found in (2),
thereby increasing the computational complexity. By further
strengthening the functionality of the hard-shrinkage operation,
an acceleration method, called AH-LBP, is presented in [15] as
follows:

{μ
τ μ τ

− = ( )≔
∈ } <

( )
α τ
⁎

⎪

⎪⎧⎨
⎩

D
D s

AH LBP
0, 0, 8 or ,

1, otherwise,
,

3
u

T
T

,2,2

where s is an adjustable parameter. As s¼1 and the norm of μDT

is set as the supremum norm · ∞, (3) is equivalent to (2).
Based on (3), it can be summarized that AH-LBP is based on the

hard-shrinkage operation with respect to s and τ, of which τ is a
fundamental parameter and s is used to adjust the scale of τ to
obtain globally optimal results. Due to the locality of τ, numerous
manual modulations of s continue to be required, which makes
both AH-LBP and H-LBP less practical in real applications. As a
solution, both globality and locality should be considered in the
H-LBP-based edge extraction method.

2.2. Sparsity-based shrinkage approach for SS-LBP

In this subsection, we begin the presentation of the proposed
shrinkage approach based on sparsity of the global area. For con-
venience of discussion, let us introduce some notation. We take all
the image patches { = … }U k p, 1, ,k of size 3�3 pixels, ordered
lexicographically as column vectors μ = ( )UVeck k with = …k p1, , .
Here, we denote μ μ μ=[ … ], , , p1 2 .

Aiming at constructing the sparsity-based model Ref. [16], we
consider D as a pre-specified dictionary with atoms
{ = … }ie , 1, , 8i . By projecting each μk onto D as mentioned in (1),
we find that α μ= Dk

T
k with = …k p1, , . Following this, the general

form can be provided:

= DT , with α=[ ] ∈ × ,k
p8 (4)

where each column αk of provides a sparse representation with
respect to the centered pixel and its neighboring area.

By investigating the local sparsity of αk, H-LBP and AH-LBP
implement point-wise edge extraction, several components of
which are inherited into our method. Here, let
* α α=[ … ]⁎ ⁎⁎, , p1 where α ≠⁎ 1, 0k or 8 and ≤⁎p p. Motivated by (3),

a global representation can be yielded by a specified column-wise
norm as follows:

C ( * ) α α α≔ …⁎ ⁎ ⁎⁎⎡⎣ ⎤⎦, , , .p1 2 (5)

The remaining question is how to find a novel and reasonable
threshold ε to constrain the number of nonzero elements in C ( * ),
i.e., ‖ C ( *) ‖0 o ε for sparse operations. Following the concepts in
[17], a theoretically optimal choice of ε is

ε λ= ·M ( C ( * ) ) , (6)

whereM ( C ( * ) ) returns themedian value of the row vector C ( * ),
and λ depends on the noise level. Hence, for a centered pixel ukwith its
corresponding αk, its SS-LBP value can be computed using the fol-
lowing sparsity-based shrinkage:

α
τ α ε

− = ( )≔
∈ { } <

( )
ε τ

⎧⎨⎩SS LBP
0, 0, 8 or ,
1, otherwise,

.
7

u
S
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,k

As shown in (6), because the threshold ε is driven by the global
data sparsity, SS-LBP can be self-adaptive in real applications while
avoiding excessive manual modulations. To ensure the speed and
efficiency of SS-LBP in real applications, we set the norm used in
(5) and (7) as the supremum norm. Especially when λ¼1, most
cases under weak noise can be well addressed. The SS-LBP flow
diagram is shown in Fig. 1. Additionally, SS-LBP is successfully
applied to multiple-frame radiographic images. The relevant re-
sults will be shown later.

3. Experiments and analysis

All the experiments are performed on a PC equipped with Intel
(R) Pentium(R) CPU T4300 2.10 GHz, with 2 GB of memory, and the
algorithmswere coded in theMATLAB 7.4 environment onWindows 7
32-bit. In this section, we present the results of several experiments on
blurry and noisy real digital radiographies (DR) to demonstrate the
speed and efficiency superiority of SS-LBP over H-LBP and AH-LBP.

3.1. 8-bit DR images

First, we test on four 8-bit DR images and compare with AH-
LBP (equivalent to H-LBP with s¼1). The images in Fig. 2, from left
to right, are a head CT image, an X-ray computed tomography of
hand and two neutron radiographies with low contrast areas.
From the comparison of Fig. 2(B) and (C), we find that SS-LBP can
successfully extract the full edges, even with the complex back-
grounds and low-contrast areas in the images, which almost
achieve the parallel results of H-LBP and AH-LBP.

Fig. 1. SS-LBP flow diagram.
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