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a b s t r a c t

For a free-electron laser without inversion (FELWI), estimates of the threshold laser power are found. The
interaction induced deviation angle of electrons in the first undulator is found. It is shown that for real
beams this angle is less than natural divergence angle of the beam. The large-amplification regime
should be used to bring an FELWI above the threshold laser power.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a free-electron laser (FEL), coherent stimulated radiation is
produced by the accelerated motion of electrons in the ponder-
omotive potential formed by the combined field of the wiggler and
the electromagnetic wave. The so-called free-electron laser without
inversion (FELWI) proposed recently [1–6] relies on the non-
collinear arrangement of the electron and laser beams. Such sys-
tems are known related to usual FELs and strophotrons [7–11]. An
FELWI aims to improve performance of FELs and optical klystrons
and to extend operation domain to shorter wavelengths. This is to
be achieved by a two-wiggler design employing an advanced laser-
induced electron phasing in the first wiggler. It reveals itself in the
proportionality of the laser-induced changes of the electron energy
and the laser-induced angular deviation of electron velocity, which
is specific to the non-collinear interaction geometry of an electron
beam and laser beam. Engineering of the angular-dependent elec-
tron path length in the drift region between the two wigglers
makes it possible to tune most of the electrons exiting the first
wiggler closer to the phase, which is favorable for efficient ampli-
fication in the second wiggler. As a result, an FELWI gain G becomes
positive for almost every detuning Ω�ωðv0�vresÞ=c, which char-
acterizes deviation of the electron velocity or the laser frequency
from the resonance condition, Ω¼ R

GðΩÞ dΩ40 [1–6].

2. Single particle approximation

According to the main idea of Ref. [4], a possibility of FELWI
realization is strongly related to a deviation of electrons from their
original direction of motion owing to interaction with the fields of
undulator and co-propagating light wave. The deviation angle
appears to be proportional to energy gained or lost by an electron
during its passage through the undulator. Owing to this, a sub-
sequent regrouping of electrons over angles provides regrouping
over energies. In principle, a proper installation of magnetic lenses
and turning magnets after the first undulator in FELWI can be used
in this case for making faster electrons running over a longer
trajectory than the slower ones [5]. This is the negative-dispersion
condition which is necessary for getting amplification without
inversion [1].

It is clear that the described mechanism can work only if the
interaction-induced deviation of electrons (with a characteristic
angle Δα) is larger than the natural angular width αbeam of the
electron beam (see Fig. 1),

Δα4αbeam: ð1Þ

As the energy gained/lost by electrons in the undulator and the
deviation angle are proportional to the field strength amplitude of
the light wave to be amplified, condition (1) determines the
threshold light intensity, only above which amplification without
inversion can become possible. This threshold intensity is
estimated below.

In the non-collinear FEL the electron slow-motion phase is
defined as

φ¼ qzþ k
!� r!�ωt; ð2Þ
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where q¼ 2π=λ0 and λ0 is the undulator period, k
!

and ω are the
wave vector and frequency of the wave to be amplified, respec-

tively, k
!��� ���¼ω=c, r!¼ r!ðtÞ is the electron position vector and z¼

zðtÞ is its projection on the undulator axis. Let the initial electron
velocity v!0 be directed along the undulator axis 0z. Let the

undulator magnetic field H
!

be directed along the x-axis. Let the

light wave vector k
!

be lying in the ðxzÞ plane under an angle θ to
the z-axis. Let the electric field strength ε! of the wave to be
amplified is directed along the y-axis, as well as its vector potential

A
!

wave and the undulator vector potential A
!

und, where

Awave ¼
cε0
ω

cos k
!� r!�ωt
� �

; Aund ¼
H0

q
cos ðqzÞ; ð3Þ

and ε0 and H0 are the amplitudes of the electric component of the
light field and of the undulator magnetic field, respectively. The
described geometry corresponds to that considered in Ref. [4]. The
slow motion phase (2) obeys the usual pendulum equation

€φ ¼ �a2 sin φ; ð4Þ
where

a¼ ce
ffiffiffiffiffiffiffiffiffiffiffi
ε0H0

p
E0

; ð5Þ

E0 � γmc2 is the initial electron energy and γ is the relativistic
factor. If L is the undulator length, the ratio L=c is the time it takes
for an electron to pass through the undulator. The product of this
time by the parameter a of Eq. (5) is known [10] as the saturation
parameter μ,

μ¼ aL
c
¼ eL

ffiffiffiffiffiffiffiffiffiffiffi
ε0H0

p
E0

: ð6Þ

Amplification in FEL (with H0 ¼ const) is efficient one as long as
μr1. At μ41 the FEL gain G falls. The condition μ� 1 determines
the saturation field ε0 sat and intensity Isat. For example, at L¼ 3 m,
H0 ¼ 104 Oe, γ ¼ 102 we have ε0 sat � 1:2� 104 V=cm and Isat � 2�
105 W=cm2. In our further estimates of the FELWI threshold field
and intensity we will have to keep in mind that it is hardly rea-
sonable to consider fields stronger than the saturation field ε0 sat.

In accordance with the results of Refs. [4, Eq. (14)] and [5,
Eq. (13)], a transverse velocity vx and energy ΔE acquired by an
electron after a passage through the undulator are directly pro-
portional to each other:

vx ¼ c θ
ΔE
E0

; ð7Þ

which gives in the first order the following estimate of the electron
deviation angle Δα:

Δα� vð1Þx

v0
� vð1Þx

c
¼ θ

ΔEð1Þ

E0
� θ μ2 λ0

4πL
� μ2 dλ0

4πL2
; ð8Þ

where d is the electron beam diameter and we took θ� d=L. Here
we have used the first-order change of the electron energy ΔEð1Þ

Eq. (13) of [13]:

ΔEð1Þ ¼ μ2E0
λ0
4πL

: ð9Þ

Let us take for estimates maximal value of the saturation para-
meter μ compatible with the weak-field approximation, μ� 1. Let us
take also λ0 ¼ 3 cm; d¼ 0:3 cm, and L¼ 3� 102 cm. Then, we get
from Eq. (8) the following estimate of the electron deviation angle:

Δα� 10�6: ð10Þ

3. Collective description

The interaction of electron beamwith laser field can be described
by laws of conservation for momentum peþpL ¼ p0

eþp0
L and energy

EeþEL ¼ E0
eþE0

L. Here pe and p0
e are initial and final momentums of

electrons, respectively; pL and p0
L are initial and final momentums of

laser field, respectively; E0
L and EL are initial and final energies of light

beam, respectively, and E0
e and Ee are initial and final energies of

electrons, respectively. The density of electromagnetic wave
momentum is PL ¼ 1=ð4πcÞ½EB� ¼ kω=ð4πcÞA2

L , where AL is an
amplitude of a vector-potential of laser field. We can write for
A0
L ¼ AL expðk″LÞ, where k″ is a spatial growth rate of laser field in a

medium of an electron beam; L is a length of interaction. From law of
conservation we can expect that jΔpj ¼ jp0

e�pe j ¼ jp0
L�pL j ¼

A2
L ½expð2k″LÞ�1�. We can see that the change of electron momentum

jΔpj depends on the spatial growth rate k″: with the growth rate k″

rising, the change of electron momentum rises too. This means that
for noncollinear interaction the deviation of electron from its original
direction depends on both the spatial growth rate k″ and the
amplitude AL of laser field. The growth rate k″ is a function on
electron beam current; and the amplitude depends on laser power.

3.1. Space amplification

We consider the induced radiation by a mono-energetic beam of
electrons propagating in awiggler. We assume that the static magnetic
field of a plane undulator Aw is independent of the transverse coor-
dinates x and y. Also we approximate the static magnetic field by a
harmonic function Aw ¼ Awey ¼ ðA0e� ikwr þc:c:Þey, where kw ¼ ð0;0
; kwÞ is the wiggler wave vector; “c.c.” denotes the complex conjuga-
tion, and ey is the unit vector along the y-axis. The wiggler field causes
an electron to oscillate along the y-axis. For this reason, the electron
interacts most efficiently with a light wave if the latter is linearly
polarized. We assume that the vector potential of the laser wave has a
linear polarization AL ¼ ALðt; x; zÞey ¼ aþ eiðk�kwÞr� iωt .

The early theoretical constructions assume infinite electron and
laser beams. In reality both electron and laser beams are restricted in
the transverse directions. This means that the non-collinear arrange-
ment of electron and laser beams leads to the finite area of their
interaction (Fig. 2). The length of laser amplification in the medium of
electron beam is LL ¼ 2rb= sin ðαþθÞ, where 2rb is a width of the
electron beam in the xz-plane (Fig. 2). The length, at which the elec-
trons move acting by force of laser field, is equal to
Le ¼ 2rL= sin ðαþθÞ, where 2rL is a width of the laser beam in the xz-
plane.

3.2. The FELWI threshold

The solution of the linearized equations for slow motion of the
electron in the xz-plane is [12]:

δv J ¼ K2c2

γ30

X4
j ¼ 1

β1kj�
ω
c2
β2u

DbðjÞ
aje

iξ0 � iΔωðjÞtþc:c: ð11Þ

Here K is the undulator strength parameter, defined as normalized
dimensionless vector-potential of the undulator magnetic field
K ¼ e=ðmc2ÞjA0 j . The total relativistic factor of electrons γ0 is
defined as γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2K2

p
ð1�u2=c2Þ�1=2, where the initial velocity

Fig. 1. The scheme of electron beam after first wiggler.
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