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a b s t r a c t

In particle detectors, pulse shaping is the process of changing the waveform of the pulses in order to
maximize the signal to noise ratio. This shaping usually only takes into account white, pink (flicker) and
red (Brownian) noise. In this paper, a generalization of noise indexes as a function to an arbitrary f β noise
type, where β is a real number, is presented. This generalization has been created using the differintegral
operator, defined in Fractional Calculus. These formulas are used to calculate the Equivalent Noise Change
(ENC) in detector particle systems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In spectroscopy systems, pulse shaping plays a crucial role in
noise filtering. In order to analyze different shaping modes,
Goulding [1] and Radeka [2] defined the noise indexes of shapers
(also called “form factors” in [3]) as parameters proportional to the
contribution of a specific noise type. These parameters only
depend on the pulse shape and its duration. A different noise
index has to be calculated for each different “color of noise”. In a
signal with components at all frequencies and a power spectral
density per unit of bandwidth proportional to f β , the color is given
by the β value. For instance, the spectral density of white noise is
flat ðβ¼ 0Þ, while pink (flicker) noise has β¼ �1 and red (Brow-
nian) noise has β¼ �2.

In this paper, all the noise spectral densities are referred to the
preamplifier output. Goulding [1] calculated the noise indexes for
voltage (white) and current (red) noise at this point of the circuit.
In [4] the f�1 (pink) noise index using the concept of 1/2-deriva-
tive developed in Fractional Calculus [5] was also introduced. A
strength of noise indexes is that they are calculated in time-
domain directly whereas other methods that use Fourier Trans-
forms are less intuitive and more complex to carry out. The first
conclusion taken from the noise indexes is that the contribution

from red noise increases with shaping time whereas the white
noise contribution decreases. The f�1 noise does not depend on
the shaping time. Fig. 1 shows a typical example of ENC at shaper
output vs. shaping time in presence of red and white noise.

Until now, noise analysis have been performed just for white,
pink and red noise (e.g. [6]), which are proportional to f �2, f �1

and f 0 respectively. However, in particle detectors, noise dis-
tribution is often more complex. In fact, the most common noise in
particle detectors has a continuous range from f �0:5 to f �2 [7,8]. In
this paper, a generalization of the noise indexes using differinte-
grals is proposed with the aim of covering a continuous desired
range, instead of using only discrete values such as f �2, f �1 or f 0.
With this generalization, shapers can be analyzed more deeply.

In principle, this analysis can be used to obtain the generalized
noise parameters of a shaper. This analysis can be used individu-
ally, or as a cost function of an automated algorithm to find the
optimal shaping. Moreover, this method also allows analyzing a
shaper, provided by optimization algorithms, to find the pre-
dominant noise type present in the system, and then try to miti-
gate it. There is extensive material published on optimal pulse
shaping synthesis (e.g. [9–12]).

Finally, we would like to clarify that this paper focuses on noise
impact measurement, but does not focus on selecting the most
suitable pulse shape for a given spectroscopy system or particle
detector; instead, in this paper we describe a method to analyze
the relative noise performance of pulse-shaping systems.
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2. Differintegrals

Whenever a function W(t) is derived n (positive integer) times
or integrated �n times, we can replace n for a real number α. If
α40, W ðαÞðtÞ is the α fractional derivative of W(t). Otherwise, W ðαÞ

ðtÞ is the �αth fractional integral. Differintegrals are a combined
fractional differentiation/integration operator. Therefore, W ðαÞðtÞ is
the Differintegral operator [5] applied to W(t). Actually, α can be
also a imaginary number [13] leading to complex-order deriva-
tives. However, for our purposes, it is sufficient that α be a real
number.

In the literature, there are several definitions of fractional
derivative and integral [14]. Thus, to define the differintegral
operator, it must be defined first fractional derivatives and inte-
grals separately.

On one hand, the classical form of fractional integral is the
Riemann–Liouville definition:

Jαf ðtÞ≔ 1
ΓðαÞ

Z t

0
ðt�τÞα�1f ðτÞ dτ ð1Þ

where α is a real positive number, Γ is the Gamma Function and J
is the Riemann–Liouville integral operator.

On the other hand, the definition of Riemann–Liouville frac-
tional derivative is based in the previous formula and is given by

Dαf ðtÞ≔ 1
Γðn�αÞ

dn

dtn

Z t

0
ðt�τÞn�α�1f ðτÞ dτ

� �
ð2Þ

where n is an integer number. This equation is the cornerstone of
fractional calculus.

Although both operators are linear, J commutes (i.e.
JαJβf ðtÞ ¼ JβJαf ðtÞ). However, D does not commute for non-integer
numbers, that is JαDαf ðtÞaDαJαf ðtÞ. In addition Dαk for any con-
stant k is not always equal to 0. To solve these drawbacks, alter-
native definitions for fractional derivatives were proposed. One of
the most popular is the Caputo derivative, also based on Eq. (1):

Dα
c f ðtÞ≔J⌈α⌉�αD⌈α⌉f ðtÞ ð3Þ

where ⌈α⌉ is the ceiling function, which provides the smallest
integer greater than or equal to α. Then, in this case, the value of
D⌈α⌉f ðtÞ is a derivative of integer value. This new operator is linear
and commutes, that is JαDα

c f ðtÞ ¼Dα
c J

αf ðtÞ, and Dα
c k¼ 0 for any

constant k. Both operators, J and Dc form the differintegral

operator. However, both J and Dc are complex to calculate by
means of numerical methods.

To approximate the value of the differintegral, instead of J and
Dc operators, in this paper and henceforth we are going to use the
Grünwald–Letnikov definition given by

f ðαÞðtÞ ¼ lim
h-0

1
hα
Xk
j ¼ 0

ð�1Þj
α
j

 !
f ðkh� jhÞ ð4Þ

This formula is easily implemented using numerical methods
[16] compared to (1) and (3) and it has been used in another works
related to filters and numerical calculus (e.g. [17]).

3. Generalization of the ENC formula

As a starting point, we are going to use the ENC formula pre-
sented in [8,3] because it is necessary to know the noise indexes to
be calculated. The ENC formula is

Q2
n ¼ i2nFiτsþv2nFv

C2

τs
þFvf Af C

2 ð5Þ

where Qn is the ENC in Coulombs, τs is the total shaping time and
C is the equivalent detector capacitance. Fv, Fi, and Fvf are the noise
indexes for f0-noise, f�2-noise and f �1-noise, respectively; in this
nomenclature, they are dimensionless. in is the current noise
spectral density measured in A=

ffiffiffiffiffiffi
Hz

p
, vn is the voltage noise

spectral density measured in V=
ffiffiffiffiffiffi
Hz

p
, Af is the f�1-noise spectral

density coefficient measured in V2. The f�1-noise spectral density
vnf is equal to

vnf ¼
ffiffiffiffiffi
Af

f

s
½V=

ffiffiffiffiffiffi
Hz

p
� ð6Þ

Other nomenclatures different than the one proposed in [3]
such as [15,8] are equivalent. Equation (5) is applicable to both
analog and digital shapers.

The value of Fi and Fv are

Fi ¼
1
2τs

Z 1

�1
W2ðtÞ dt ð7Þ

Fv ¼ τs
2

Z 1

�1
ðW 0ðtÞÞ2 dt ð8Þ

where for time-invariant pulse shaping W(t) is the system's
impulse response for a short input pulse with the peak output
signal normalized to unity. For time-variant systems (e.g. gated
integrators), W(t) can be also easily calculated according to the
method described in [1]. An alternative notation of these last two
formulas can be found in the same reference.

The expression for Fvf can be deduced from [15,4] and is equal
to

Fvf ¼
1
2

Z 1

�1
W ð1=2ÞðtÞ
� �2

dt ð9Þ

where W ð1=2ÞðtÞ is the 1/2-derivative of W(t). It must be taken into
account that the calculus of the 1/2-derivative in time domain is
equivalent to multiply by

ffiffi
s

p
in Laplace domain. There are several

methods (analytical and numerical) to calculate the fractional
derivatives [5]. One of the simplest for 1/2-derivative calculation
was proposed in [4]:

W ð1=2ÞðtÞ ¼ 1ffiffiffiffiffi
πt

p nW 0ðtÞ; 8 t40 ð10Þ

Fig. 1. Equivalent noise charge vs. shaping time. Changing the red noise ðβ¼ �2Þ
or, as in this case, white noise ðβ¼ 0Þ contribution shifts the noise minimum.
Increased voltage noise is shown as an example. (Figure reproduced from [3]) with
permission.
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