

Available online at www.sciencedirect.com

Nuclear Physics B 907 (2016) 180-186

www.elsevier.com/locate/nuclphysb

Scalar explanation of diphoton excess at LHC

Huayong Han, Shaoming Wang, Sibo Zheng

Department of Physics, Chongqing University, Chongqing 401331, PR China

Received 22 February 2016; received in revised form 17 March 2016; accepted 2 April 2016

Available online 7 April 2016

Editor: Hong-Jian He

Abstract

Inspired by the diphoton signal excess observed in the latest data of 13 TeV LHC, we consider either a 750 GeV real scalar or pseudo-scalar responsible for this anomaly. We propose a concrete vector-like quark model, in which the vector-like fermion pairs directly couple to this scalar via Yukawa interaction. For this setting the scalar is mainly produced via gluon fusion, then decays at the one-loop level to SM diboson channels gg, $\gamma\gamma$, ZZ, WW. We show that for the vector-like fermion pairs with exotic electric charges, such model can account for the diphoton excess and is consistent with the data of 8 TeV LHC simultaneously in the context of perturbative analysis.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The first data at the 13 TeV Large Hadron Collider (LHC) was released on December 15 2015 [1,2]. It shows an excess in diphoton final state at the invariant mass $M \simeq 750$ GeV, with local significance of order 3.9 σ and 2.6 σ for ATLAS and CMS, respectively. In contrast, no excesses in the Standard Model (SM) diboson channels such as $\gamma\gamma$, ZZ, WW, ZW, dilepton and dijet were seen in the old data of 8 TeV LHC [3–11].

http://dx.doi.org/10.1016/j.nuclphysb.2016.04.002

E-mail address: sibozheng.zju@gmail.com (S. Zheng).

^{0550-3213/© 2016} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

Matters and their SM quantum numbers in the vector-like quark model. Another fermion doublet $\tilde{\Psi}$ is added to make sure that the model is free of gauge anomaly.

Table 1

Matters	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
ϕ	1	1	0
$\Psi = (\psi_1, \psi_2)^T$	3	2	q_{ψ}
$\tilde{\Psi} = (\tilde{\psi}_1, \tilde{\psi}_2)^T$	Ī	$\overline{2}$	$-q_{\psi}$

If the diphoton excess is indeed a hint of some new physics beyond SM, for an on-shell decay to diphoton it should be due to either spin-0 or spin-2 scalar ϕ . To explain the observed excess, the cross section $\sigma(pp \rightarrow \phi \rightarrow \gamma \gamma)$ is required to satisfy the signal strength of order,

$$\sigma(pp \to \phi \to \gamma\gamma) \mid_{\sqrt{s}=13 \text{ TeV}} \simeq (8 \pm 3) \text{ fb.}$$
(1.1)

Such SM singlet scalar which is responsible for the excess has stimulated extensive interests, see Ref. [12–54].

In this paper, we propose a concrete vector-like quark model, in which the vector-like fermion pairs directly couple to ϕ via tree-level Yukawa interaction. Under our setup, ϕ is mainly produced via gluon fusion, then decays at the one-loop level to SM diboson channels $gg, \gamma\gamma, ZZ, WW$, with the colored vector-like fermion pair running in the Feynman loop. For the vector-like fermion pairs with exotic electric charges, such model can account for the diphoton excess, and is consistent with the data of 8 TeV LHC simultaneously in the context of perturbative analysis.

This paper is organized as follows. In Sec. 2 we address the matter content in the vector-like quark model, define the parameter space, and summarize the experimental limits on ϕ and vector-like quark at the 8 TeV LHC. In Sec. 3 we explore the parameter space for ϕ either being a real scalar or pseudo-scalar. Finally, we conclude in Sec. 4.

2. The vector-like quark model

2.1. The model

In order to reproduce the on-shell decay $\phi \rightarrow \gamma \gamma$, which is a loop process for the SM singlet ϕ , we directly couple ϕ to a fermion doublet Ψ , the latter of which is a subsector of vector-like quark model as defined in Table 1. In this table, another fermion doublet $\tilde{\Psi}$ is added in order to evade the gauge anomaly problem.

For simplicity, we assume that the mass $M_{\tilde{\Psi}}$ for $\tilde{\Psi}$ is obviously larger than the mass M_{Ψ} for Ψ . Below the mass scale $M_{\tilde{\Psi}}$ the effective Lagrangian in the new physics is described by,¹

$$\mathcal{L}_{\text{BSM}} = \frac{1}{2} \left(\partial\phi\right)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 + i \bar{\Psi} \gamma^{\nu} D_{\nu} \Psi - M_{\Psi} \bar{\Psi} \Psi + \mathcal{L}_{\text{Yukawa}},\tag{2.1}$$

where

$$\mathcal{L}_{\text{Yukawa}} = \begin{cases} y\phi\bar{\Psi}\Psi, & (\text{scalar}), \\ iy\phi\bar{\Psi}\gamma_5\Psi, & (\text{pseudo-scalar}). \end{cases}$$
(2.2)

 $^{^{1}}$ The effective Lagrangian as analyzed in the previous version of this manuscript is a simplification of this concrete one.

Download English Version:

https://daneshyari.com/en/article/1842833

Download Persian Version:

https://daneshyari.com/article/1842833

Daneshyari.com