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The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful 
observable for both fundamental physics and cosmology. The expression of the delay when the particles 
travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular 
coordinate system and self-consistent assumptions. The present article shows that this formula enjoys 
a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. 
This result reveals an interesting kinematical property of general relativity, namely that the tidal forces 
experienced by ultra-relativistic particles in the direction of their motion are much smaller than those 
experienced orthogonally to their motion.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The time delay between the reception of ultra-relativistic (UR) 
particles has historically been proposed in 1968 as an astrophysical 
observable to measure the mass of the electronic neutrino [1]. This 
method has notably been applied to the delay between photons 
and neutrinos emitted during the supernova explosion SN1987A, 
yielding the upper limit mν ≤ 16 eV for the mass of the electronic 
neutrino (see e.g. ref. [2] and references therein). Although much 
less constraining than today’s limits on neutrino masses obtained 
by the Planck mission [3], the photon-neutrino delay observed with 
SN1987A has been nevertheless one of the main arguments against 
the OPERA erroneous measurement of superluminal neutrinos [4].

The idea of using time delays between UR particles as a cos-
mological probe is more recent [5] (see also the short review [6]). 
Though observational applications still have to face technical dif-
ficulties [7], the time delays between, e.g., cosmic rays and γ -ray 
bursts are expected to provide independent measurements of the 
cosmological parameters in the future. However, even with perfect 
sources and instruments, an irreducible uncertainty comes from 
the fact that the particles propagate in a locally inhomogeneous 
universe, and are therefore affected by gravitational phenomena. 
This issue was recently tackled by the authors of ref. [8], hereafter
FGMV15, who derived a general expression for the time delay 

* Correspondence to: Department of Mathematics and Applied Mathematics, Uni-
versity of Cape Town, Rondebosch 7701, Cape Town, South Africa.

E-mail address: pierre.fleury@uct.ac.za.

within an arbitrary spacetime, generalizing the formula proposed 
in ref. [5] for the Friedmann–Lemaître–Robertson–Walker universe.

The result of FGMV15 is the following. Consider two particles 
P1, P2 emitted at the same event S with different velocities. Since 
one of them is slightly slower than the other, those particles are 
received at different times t1, t2 by the observer, whose difference 
is

�t ≡ t2 − t1 =
(
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2E2
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) t1∫
ts

dt

1 + z(t)
, (1)

at lowest order in the inverse of the gamma factors γi ≡ Ei/mi � 1, 
where mi and Ei are respectively the rest mass and the energy 
of Pi , as measured at reception in the observer’s frame. In eq. (1), 
the redshift z is not necessarily cosmological, because the formula 
is valid for any geometry, but it rather relies on an arbitrary 3 + 1
foliation of spacetime such that the coordinate t coincides with 
the observer’s proper time. The integral over t must be understood 
as an integral along the worldline of P1, which is approximately 
a null geodesic. It is remarkable that eq. (1) has exactly the same 
form as in a strictly homogeneous and isotropic universe.

In FGMV15, this result was derived using the geodesic-light-
cone formalism [9,10], and relying on a self-consistent ansatz. 
However, as mentioned by the authors themselves, the simplic-
ity of eq. (1) suggests the existence of a more general deriva-
tion, which is precisely the purpose of the present paper. In 
sec. 2, I show that the time-delay formula is actually equivalent to 
assuming that the relative velocity of two UR particles is constant 
during their travel. I then physically justify this surprising assump-
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Fig. 1. Relation between (i) the time delay �t of two UR particles following the 
worldlines L1, L2, in the frame of the observer Lo; and (ii) the proper distance �

between those particles in the frame of the fastest one when it is detected by the 
observer. Solid lines indicate worldlines, while the dashed line represents the set of 
all events which are simultaneous with O 1 in P1’s frame.

tion in sec. 3, which reveals a general mechanism about how UR 
particles experience tidal forces.

2. Physical interpretation of the time-delay formula

Equation (1) has the advantages of directly involving observable 
quantities, and exhibits a dependence in the cosmological param-
eters via z. However, its physical meaning is hidden and therefore 
requires some reformulation. First notice that the prefactor of the 
integral corresponds to the difference between the velocities vi of 
the particles as measured by the observer:
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√
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Second, the integral of eq. (1) is proportional to the proper 
travel time τ1 of P1 from its emission at S to its observation at O 1. 
Indeed, since the particle is UR the evolution of its energy is es-
sentially encoded in the lightlike redshift z as

1 + z(t) ≈ E(t)

Eo
= γ (t)

γo
= 1

γo

dt

dτ
, (4)

where a subscript o indicates the observed value of a quantity, and 
τ denotes the proper time of P1; whence

t1∫
ts

dt

1 + z(t)
≈ γ1τ1, (5)

so that eq. (1) takes the form

�t = γ1(v1 − v2) τ1. (6)

Though simpler than the former, the latter formula involves 
quantities defined in different frames, which makes it hard to in-
terpret. The last step thus consists in translating eq. (6) into a 
relation between quantities in P1’s frame only. More specifically, 
we are going to relate the observed time delay �t to the distance �

that separates the particles in P1’s frame, when P1 is detected by 
the observer.

The geometry of the problem is depicted in Fig. 1. The world-
line Li of the particle Pi intersects the observer’s worldline Lo
at the even O i . Define I as the event of L2 which is simultane-
ous with O 1 in the frame of P1. This event therefore indicates the 
spatial position of P2 in this frame when P1 is detected by the 

observer. The spacetime separation �s2(I, O 1) is therefore equal 
to �2.

In the following, it will be convenient to work with a Fermi 
normal coordinate system [11] (t, xi) about Lo, so that spacetime 
appears nearly flat in the vicinity of this worldline. As a conse-
quence, the geodesics L1, L2 are essentially straight lines in the 
domain of interest. If we choose the axes of (xi) so that ∂1 at O 1
is aligned with the direction of O 1 E , then the problem becomes 
spatially one-dimensional, and we only have to consider the coor-
dinate x1 ≡ x.

Because I ∈ L2, its coordinates (t I , xI ) satisfy

xI = v2(tI − �t). (7)

Besides, a simple Lorentz transformation relates those coordinates 
to their counterpart (0, −�) in P1’s frame,

0 = γ1(tI − v1xI ) (8)

−� = γ1(xI − v1tI ). (9)

Combining eqs. (7), (8), and (9) then yields

� = 1

γ1

v2

1 − v1 v2
�t, (10)

which, once introduced in eq. (6), finally gives

� = v1 − v2

1 − v1 v2
τ1 = |v2/1|τ1, (11)

where we have recognised the expression of the velocity v2/1 of 
P2 in P1’s frame [12] at the observation event. Equation (10) is 
equivalent to the time-delay formula (1) at lowest order in the 
inverse gamma factors, but its meaning is clearer: since the dis-
tance � is proportional to the travel time τ1, the relative veloc-
ity v2/1 of two UR particles emitted at the same event and in the same 
direction is constant during their travel.

This statement—which is the physical content of the conjec-
tures (5) in FGMV15—means that tidal forces (i.e. curvature effects) 
are negligible in this specific situation, even when the particles 
travel over cosmological distances. This is a priori surprising. In-
deed, in the comparable situation of two UR particles, such as 
photons, emitted simultaneously but in slightly different direc-
tions, curvature is absolutely non-negligible, as it is responsible for 
all gravitational lensing phenomena.

In the next section, I propose a geometrical solution to this 
paradox, showing that for UR particles, longitudinal curvature is ef-
fectively much smaller than transversal curvature.

3. Tidal forces and ultra-relativistic particles

3.1. Geodesic deviation equation

Because the particles Pi are freely falling and very close to each 
other, it is reasonable to consider their worldlines Li as infinites-
imally separated timelike geodesics. Let us parametrize them by 
their own proper time xμ

1 (τ ), xμ
2 (τ ), and introduce the separation 

vector ξ defined by ξμ(τ ) ≡ xμ
2 (τ ) − xμ

1 (τ ). This vector is orthogo-
nal to the geodesics, in the sense that ξμuμ = 0, where u denotes 
the four-velocity of one of the particles. Physically speaking, ξ rep-
resents the spatial separation of the particles in their rest frame; 
its norm ξμξμ is thus nothing but the �2 introduced in the previ-
ous section.

The evolution of ξ with the particles’ proper time τ is given by 
the geodesic deviation equation [11]
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