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We find that a uniformly accelerated particle detector coupled to the vacuum can cool down as its 
acceleration increases, due to relativistic effects. We show that in (1+1)-dimensions, a detector coupled 
to the scalar field vacuum for finite timescales (but long enough to satisfy the KMS condition) has a KMS 
temperature that decreases with acceleration, in certain regimes. This contrasts with the heating that one 
would expect from the Unruh effect.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In 1976, it was proposed that the inequivalence of field quanti-
zation schemes associated with inertial and accelerated observers 
implied that observers uniformly accelerating in the Minkowski 
vacuum (as seen by inertial observers) would detect a thermal 
bath of particles [1]. Specifically, an accelerated particle detector 
coupled to the Minkowski vacuum would experience a thermal 
response [2], a phenomenon known as the Unruh effect. The tem-
perature T of this thermal bath was found to be proportional to 
the magnitude a of the proper acceleration of the detector, with 
T = a/2π . The Unruh effect has been predicted and derived in 
contexts as disparate as axiomatic quantum field theory [3], via 
Bogoliubov transformations [2], and in studies of the response of 
non-inertial particle detectors both perturbatively [2] and non-
perturbatively [4–7], and even for non-uniformly accelerated tra-
jectories [8,9]. More recently non-perturbative techniques devel-
oped in [4] have been used to prove that within optical cavities 
in (1+1)-dimensions an accelerated detector equilibrates to a ther-
mal state whose temperature is proportional to acceleration. This 
holds independently of the cavity boundary conditions, provided 
the detector is allowed enough interaction time [10].

Since all investigations so far have found that a particle detector 
coupled to the vacuum will detect more particles when it is accel-
erated than when undergoing inertial motion, we typically regard 
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the Unruh effect as a universal phenomenon: simply put, ‘acceler-
ated detectors get hotter’. The common denominator in nearly all 
previous investigations is that the response of non-inertial detec-
tors is studied for long interaction times, or for a field quantized in 
free infinite open space. However on empirical grounds, finite time 
studies with different boundary conditions are arguably relevant. 
Any experimental setup based on quantum optics (e.g. an atom 
accelerating through an optical cavity) will necessarily require par-
ticular boundary conditions rather than infinite space.

But do accelerated detectors always become hotter? In this pa-
per we address this question using both perturbative and non-per-
turbative tools. Previous numerical work on accelerating Unruh–
deWitt detectors in cavities interacting for long times found that, 
as expected, a detector gets hotter and its temperature is propor-
tional to its acceleration; T ∝ a [10]. However, due to the finite 
length and time scales, the slope was not found to be 1/2π . In this 
paper we find that when shorter interaction times comparable to 
the characteristic Heisenberg time of the detector are considered 
the transition probability of an accelerated detector can actually 
decrease with acceleration. This is possible because even an inertial 
detector switched on for a finite time in the ground state, and cou-
pled to the Minkowski vacuum, will not remain completely ‘cold’ 
but will click due to switching noise and vacuum fluctuations (see 
[11] and [4] for a perturbative and non-perturbative analysis re-
spectively).

One may be tempted to argue that this effect is due to tran-
sient behaviour. This suspicion may become even stronger given 
that the effect only manifests itself for times comparable to the 
atomic Heisenberg time. However, what makes our result surpris-
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ing is that we find no clear evidence that we should associate this 
behaviour with non-equilibrium transient effects, despite the short 
interaction time. Rather we find that the response of such detec-
tors can be regarded as non-transient insofar as they satisfy the 
KMS condition, and a KMS temperature (which decreases with ac-
celeration) can therefore be defined [12,13]. This would mean that 
these ‘transients’ are of a rather special kind that satisfy detailed 
balance, a condition which states that each elementary process 
should be equilibrated by its reverse process, and which is char-
acteristic of equilibrium scenarios.

2. Transition probability of an accelerated detector

To model the field-detector interaction it is commonplace to 
use the Unruh–DeWitt (UDW) model [14], which consists of a 
point-like two-level quantum system that couples to a scalar 
field along its trajectory. We will first regard spacetime as a flat 
static cylinder with spatial circumference L > 0 (we will later 
consider the limit L → ∞). This cylinder topology is equiva-
lent to imposing periodic boundary conditions relevant to labora-
tory systems including closed optical cavities, such as optical-fibre 
loops [15], and superconducting circuits coupled to periodic mi-
crowave guides [16,17].

The coupling of the field to the detector is described by the 
UDW Hamiltonian [14]

H I = λ χ(τ )μ(τ )φ(x(τ ), t(τ )), (1)

where τ is the detector’s proper time, μ(τ) = σx(τ ) = ei�τσ+ +
e−i�τσ− is the detector’s monopole moment (with σ± being 
SU(2) ladder operators), and χ(τ ) is the switching function. For 
most of the paper we will consider χ(τ ) to be Gaussian

χ(τ ) = e−τ 2/2σ 2
, (2)

so that σ establishes the timescale of the interaction between 
the field and the detector. The time evolution operator under this 
Hamiltonian is given by the following perturbative expansion:

U = 1 + U (1) +O(λ2) = 1 − i

∞∫
−∞

dt H I (t) +O(λ2)

= − iλ
∑

m

(I+,ma†
mσ+ + I−,ma†

mσ− + H.c.) +O(λ2),

where the sum over m takes discrete values due to the periodic 
boundary conditions (k = 2πm/L). L is the scale of the natural IR 
cutoff (we neglect the interaction of the detector with the zero 
mode [18]), am and a†

m are field mode annihilation and creation 
operators, and

I±,m =
∞∫

−∞

dτ√
4π |m|e±i�τ+ 2π i

L (|m|t(τ )−mx(τ ))−τ 2/2σ 2
, (3)

which can be easily worked out from equation (1), expanding the 
field in plane-wave modes and substituting the expression for the 
monopole moment. If we consider a detector in its ground state, 
coupled to the vacuum state of the field, the transition probability 
at leading order in the perturbative expansion, will be given by

P =
∑
m �=0

|〈1m, e|U (1)|0, g〉|2 = λ2
∑
m �=0

|I+,m|2. (4)

Fig. 1. Transition rate (in units of 2πλ−2) as a function of acceleration for T = 1, 
� = 2, L = 20. Notice the decreasing transition rate with acceleration for low accel-
erations.

3. Evidence of the ‘anti-Unruh’ effect

For a uniformly accelerated two-level detector in a periodic cav-
ity, the probability of transition takes the form

P = λ2
∑
n,ε

∣∣∣∣∣∣
∞∫

−∞

dτ√
4πn

ei�τ+2πni
(

ε
aL

[
eεaτ −1

])−τ 2/2σ 2

∣∣∣∣∣∣
2

(5)

upon substituting (3) into (4) and using

[|m|t(τ ) − mx(τ )] = nε

a

[
eεaτ − 1

]
, (6)

where m = −εn where n ∈ Z
+ , ε = ±1, and t(τ ) = a−1 sinh(aτ )

and x(τ ) = a−1(cosh(aτ ) − 1). As per our comments in the intro-
duction, when a → 0, P does not vanish since we are considering 
a finite time interaction [4,11].

Since the switching function is symmetric about t = 0, the over-
all contribution of the right-moving modes is equal to the overall 
contribution of the left-moving modes, so (5) simplifies to

P = 2λ2
∑
n>0

∣∣∣∣∣∣
∞∫

−∞

dτ√
4πn

e
i�τ+2πni

(
1

aL

[
eaτ −1

])−τ 2/2σ 2

∣∣∣∣∣∣
2

, (7)

which can be recast as

P = −λ2

2π

∞∫
−∞

dτ

∞∫
−∞

dτ ′ei�(τ−τ ′)− τ2+τ ′ 2

2σ2 log[1 − e
2π i
aL

[
eaτ −eaτ ′]

]

(8)

upon summing the series in n. The first interesting feature to note 
in this expression is that the probability is not monotonically in-
creasing with acceleration for all values of the parameters, contrary 
to expected intuition from the Unruh effect.

For illustration, before employing the Gaussian switching func-
tion, let us first compute the transition rate for sudden switching 
[which in (1+1) dimensions is finite]. Unlike our later results, this 
rate can be evaluated without requiring high-performance com-
puting. Consider a detector suddenly switched on at time t = 0
and switched off at time t = T . From (8) (substituting Gaussian by 
sudden switching) the transition rate is

Ṗ = −λ2

2π
Re

⎛
⎝

T∫
0

ds ei�s log
[

1 − e
2π i
aL

(
eaT −ea(T −s)

)]⎞⎠ (9)

Plotting this expression as a function of acceleration in Fig. 1 we 
see that the rate at which this detector clicks can decrease with 
growing (small) acceleration.

We find that this phenomenon persists for Gaussian switching, 
not only in the transition rate, but also in the transition proba-
bility itself. However the latter is trickier to evaluate numerically 
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