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Burning something, (e.g. the proverbial lump of coal, or an encyclopaedia for that matter), in a black-
body furnace leads to an approximately Planck emission spectrum with an average entropy/information 
transfer of approximately 3.9 ± 2.5 bits per emitted photon. This quantitative and qualitative result de-
pends only on the underlying unitarity of the quantum physics of burning, combined with the statistical 
mechanics of blackbody radiation. The fact that the utterly standard and unitarity preserving process of 
burning something (in fact, burning anything) nevertheless has an associated entropy/information budget, 
and the quantitative size of that entropy/information budget, is a severely under-appreciated feature of 
standard quantum statistical physics.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Burning a lump of coal in a furnace, or even burning an ency-
clopaedia, is (assuming the validity of standard quantum physics) 
generally agreed to be an exactly unitary process — with no as-
sociated information “puzzle”. Nevertheless, there is a non-trivial 
entropy budget as (coarse graining) entropy is exchanged between 
the burning matter and the electromagnetic field, with a compen-
sating quantity of information typically being “hidden” in photon–
photon correlations.

Standard statistical mechanics reasoning applied to a furnace 
with a small hole, (or lamp-black surfaces for that matter), leads to 
the notion of blackbody radiation, with many basic features dating 
back to the 1840s. When combined with Planck’s quantum hypoth-
esis of 1900, one is quickly led to the notion of a Planck spectrum 
— with a prediction that any furnace with a small hole in one 
face will with high accuracy emit a Planck spectrum. Indeed com-
mercially available blackbody furnaces designed along these lines 
provide a simple way of generating blackbody spectra commonly 
used for calibration purposes of all types.

(Suitable technical discussions may be found in references [1–4]
and in the patent application [5]. The most up-to-date information 
is however only to be found on somewhat ephemeral commercial 
websites found by searching on the phrase “blackbody calibration 
furnace”.)
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While the underlying physical processes are manifestly uni-
tary, implying strict conservation of the von Neumann entropy, 
Svon Neumann = tr(ρ lnρ), the statistical mechanics reasoning that 
leads to the Planck spectrum inherently implies some coarse grain-
ing — one is agreeing to look only at some of the features of the 
photons that emerge from the hole in the face of the blackbody 
furnace, (the spectrum), and to not fixate on other features, (e.g., 
the interstitial gaps), and also to ignore any photons that may re-
main in the furnace. That is, the coarse graining entropy depends 
very much on what exactly you choose to measure, (and what you 
choose to hide in the correlations with things you do not measure).

Under these circumstances, every photon that escapes the fur-
nace has an energy E = h̄ω, and furthermore by definition the fur-
nace has an associated temperature T . Thus every photon that es-
capes transfers a precisely quantifiable amount of thermodynamic 
entropy to the radiation field:

S = E

T
= h̄ω

T
. (1)

After all, in transferring energy E = h̄ω from the blackbody furnace 
to the radiation field at temperature T one is precisely satisfy-
ing the Clausius definition of entropy (and implicitly satisfying the 
Carathéodory definition of entropy); that the entropy in question 
ultimately depends on coarse graining (an agreement to not look 
behind the curtain) is not germane. We use this construction to 
define what we mean by the entropy of a single blackbody photon. 
We emphasise that this is not an intrinsic property of the pho-
ton; it is a contingent property based on knowing that the photon 
in question is coming from a blackbody furnace at the specified 
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temperature. The main thrust of this article will be to quantify the 
entropy/information flows implicit in standard blackbody (Planck-
ian spectrum) radiation in some detail.

2. Preliminaries

We start by noting that the concept of a blackbody furnace 
(blackbody cavity furnace) is utterly standard:

A very good experimental approximation to a black body is pro-
vided by a cavity the interior walls of which are maintained 
at a uniform temperature and which communicates with the 
outside by means of a hole having a small diameter in compar-
ison with the dimensions of the cavity. Any radiation entering 
the hole is partly absorbed and partly diffusely reflected a large 
number of times at the interior walls, only a negligible fraction 
eventually making its way out of the hole. — Zemansky [6].

Similar comments apply to any surface coated with “lamp black” 
(soot, carbon black). Based on these concepts, pre-quantum classi-
cal thermodynamics, (using Stefan’s law and Stefan’s constant σ , 
aka the Stefan–Boltzmann constant), quickly leads to a quantifi-
able notion of entropy density and energy density for isotropic 
black body radiation (implicitly assumed to be in internal equi-
librium) [7–12]:

s = 4

3

4σ

c
T 3; ρ = 4σ

c
T 4; s = 4

3

ρ

T
. (2)

Once one introduces quantum physics, this can be supplemented 
with a quantifiable notion of photon number density [9,10,12]. 
For the Bose energy distribution relevant to the Planck spectrum 
the number (per unit volume) of photons in the frequency range 
(ω, ω + dω) is:

dn = f (ω)dω = 1

π2c3

ω2dω

eh̄ω/kB T − 1
. (3)

This just depends on Bose statistics and phase space.1 The photon 
number density (for isotropic blackbody radiation) can be written 
as [9,10,12]

n = 2ζ(3)

π2

(
kB T

h̄c

)3

, (4)

and the entropy density (for isotropic blackbody radiation) can be 
rewritten as [9,10,12]

s = 4π2

45

(
kB T

h̄c

)3

kB . (5)

The introduction of quantum physics has allowed us to derive Ste-
fan’s constant σ in terms of the more primitive physical constants 
h̄, kB , and c. Consequently, (for an isotropic photon gas of black-
body radiation implicitly assumed in internal equilibrium), the en-
tropy per photon can be seen to be2

Sper photon = s

n
= 2π4

45 ζ(3)
kB . (6)

This will slightly differ from our results below, by a purely kine-
matic factor of 4/3, simply because, (instead of dealing with an 

1 Fixing the absolute normalization (though straightforward) is often not really 
needed as it will drop out of many calculations.

2 Note this is a completely flat-space result, gravity simply does not have any 
relevance for the present computation.

isotropic photon gas in internal equilibrium), we shall be more in-
terested in individual photons being exchanged between the black-
body furnace and the wider environment. We include this present 
version of the argument because it can easily be tracked back all 
the way to quite standard textbook material. In the more subtle 
version of the argument presented below we shall also consider 
various moments in the distribution, not just the average.

Now consider the effect of coarse graining the entropy. If we 
start from some initial primitive notion of von Neumann entropy, 
(which is conserved under unitary evolution), then coarse graining 
leads to:

Scoarse grained = Sbefore coarse graining + Scorrelations. (7)

We can also rephrase this in terms of information, (negentropy; 
negative entropy [13,14]), as follows:

Sbefore coarse graining = Scoarse grained − Scorrelations

= Scoarse grained + Icorrelations. (8)

Focussing on our single-photon definition of entropy, it is often 
convenient to measure entropy in “natural units” (“nats”, some-
times called “nits” or “nepits”), constructed by dividing by the 
Boltzmann constant [15,16]. This leads to a dimensionless notion 
of entropy:

Ŝ = S

kB
= E

kB T
= h̄ω

kB T
. (9)

It is often convenient to further convert entropy to an equivalent 
number of bits [13,14,17–19], (sometimes rephrased in terms of 
“Shannons” with symbol Sh [20]), by using the Boltzmann formula, 
(relating entropy to the number of microstates), to write

S = kB ln� = kB ln(2N) = NkB ln 2, (10)

which thereby justifies the definition

Ŝ2 = S

kB ln 2
= Ŝ

ln 2
= h̄ω

kB T ln 2
. (11)

For the purposes of this article we will always be evaluating di-
mensionless entropies, either in terms of “nats” (i.e. Ŝ) or in terms 
of bits (i.e. Ŝ2).

3. Entropy/information in blackbody radiation

Using the Bose distribution the average energy per photon in 
blackbody radiation is given by the standard result

〈E〉 = h̄ 〈ω〉 = h̄

∫
ω f (ω)dω∫

f (ω)dω
= π4

30 ζ(3)
kB T . (12)

Consequently, the average entropy per photon in blackbody radia-
tion is simply

〈 Ŝ〉 = 〈E〉
kB T

= h̄〈ω〉
kB T

= π4

30 ζ(3)

≈ 2.701178034 nats/photon. (13)

This implies

〈 Ŝ2〉 = π4

30 ζ(3) ln 2
≈ 3.896976153 bits/photon. (14)

This is purely a blackbody statistical mechanics result. Note this 
result certainly applies to burning a lump of coal in a furnace, 
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