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differential cross-section.

We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It
is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which
plays a significant role in our computation. As a result, we obtain a novel formula that expresses the
entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic
and total cross sections and a physical bound on the impact parameter range, related to the elastic
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1. Introduction

Entanglement is a significant concept which appears in vari-
ous subjects of quantum physics. The quantum entanglement has
been attracting much attention of theoretical physicists, since re-
markable progress in the entanglement between the systems on
two regions was made in quantum field theories [1] and holog-
raphy [2], and the intriguing conjecture called ER = EPR [3] was
suggested. In the context of the ER = EPR conjecture, the entan-
glements between two particles, which are, for example, a pair
of accelerating quark and anti-quark [4] and a pair of scattering
gluons [5], have been studied. Then it naturally induces the fol-
lowing primitive question: How does the entanglement entropy of
a pair of particles change from an initial state to a final one in an
elastic channel of scattering process? It is qualitatively expected
that the elastic collision of two initial particles, e.g., in a high en-
ergy collider, generates some amount of entanglement between the
particles in the final state. We are interested in quantifying the en-
tanglement entropy generated by collision.

By just neglecting inelastic channels in weak coupling pertur-
bation [6], Ref. [7] analyzed such entanglement entropy in a field
theory by the use of an S-matrix.! In this article we exploit the
S-matrix formalism further in order for a non-perturbative under-
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standing of the entanglement entropy in a scattering process with
also an inelastic channel to be taken into account. This is especially
required in the case of strong interaction scattering at high energy
where inelastic multi-particle scattering contributes to a large part
of the total cross-section, while elastic scattering is still important.
The basic S-matrix formalism of strong interaction, as developed
long time ago, e.g., in Refs. [9,10], allows us to find an approach to
scattering processes without referring explicitly to an underlying
quantum field theory.

Following Refs. [9,10], we consider a scattering process of two
incident particles, A and B, whose masses are m4 and mp respec-
tively, in 1 + 3 dimensions. This process is divided [9] into the
following two channels:

A+B—A+B
A+B—X

where X stands for any possible states except for the two-particle
state, A+ B. We postpone the study extended to a matrix including
more varieties of two-particle channels [10] to a further publica-
tion.

The full Hilbert space of states is not usually factorized as
Hen = Ha @ Hp ® Hx in an interacting system. However the
Hilbert space of both the initial and final states is factorizable
in the S-matrix formalism, because one considers only asymptotic
initial and final states long before and after the interaction. We
introduce the S-matrix, S, for the overall set of initial and final
states. Once we fix an initial state |ini), the final state |fin) is
determined by the S-matrix. In this article we are interested in
the entanglement between two outgoing particles, A+ B, in a final

“Elastic” channel:

“Inelastic” channel:
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state of elastic scattering in the presence of a non-negligible frac-
tion of open inelastic final states. Therefore we additionally intro-
duce a projection operator Q onto the two-particle Hilbert space
Ha ® Hp from Hgyy. Then the final elastic state, in other words,
the state of two outgoing particles, is described as |fin) = Q S|ini).

We employ the two-particle Fock space {|p)a} ® {|g)p} as the
Hilbert space Ha ® Hp. The two-particle state which consists of
particle A with momentum p and B with § is denoted by |p,q) =
[P)a ® |q)g. We define an inner product _of the two-particle
states in a conventional manner by (p,qlk,1) = 2E;38® (p —

E)ZEB;J&Q)(& —1), where Ep=,/p>+m? (I=A,B) and p=|p|.

We shall study the entanglement between the two outgo-
ing particles, A and B. When the density matrix of the final
state on Ha ® Hp is denoted by p, we define a reduced den-
sity matrix as pa = trg p. Then the entanglement entropy is
given by Sgg = —tra palnpa. The other way to calculate the en-
tanglement entropy is to use the Rényi entropy, Sgre(n) = (1 —
n)~!lntra(pa)". It leads to the entanglement entropy described as
Sge = limp—1 Sge(n) = — limp—1 2= tra(oa)™.

2. Partial wave expansion

The partial wave expansion is often useful to analyze a scatter-
ing process. Before starting to study the entanglement entropy, let
us recall what Refs. [9,10] studied.

We adopt a center-of-mass frame. The state of the two par-
ticles, A + B, which have momenta p and —p, is denoted by
[p) := |p,—p), while the many-particle state of X is denoted
by |X). Since the complete set of states is given by the orthogo-
nal basis, {|p)),|X)}, one can describe the identity matrix as

d3p .
1= —— + / dX | X)(X]. 21
/25A525353<3>(0)'p»<<p' 1X)(X] 1)
We notice that §®(0) comes from ((kIl)) = 2E ,;2E ;7 8P (k —
7)8(3)(0), due to our definition of the inner product of states.

One can expand the S-matrix elements in term of partial waves.
Let us consider the S-matrix and T-matrix defined by S =1+ 2i7.
The unitarity condition is STS =1, which is equivalent to i(7T —
T) =2T71T. Extracting the factor of energy-momentum conserva-
tion, we describe the T-matrix elements as

(pITIg) =8 (Py — P(pItG) .,
(PITIX) =89 (P5 — PX)((PItIX). (2.2)

Pj and Py are the total energy-momenta of |[p) and |X) respec-
tively, which say Pj = (Eap + Epp. 0,0,0).
One introduces the overlap matrix F ﬁk(k, cosh),

2k

Foom T (2.3)
i - -
PEE i+ Egg

/ dX(BIET|X)8® (Px — Pp)(X|tlk) .

where k and @ are defined by p k= pkcos6 and k = p. This matrix
implies the contribution of the inelastic channel at the middle of
the scattering process. The T-matrix element in the elastic channel
and the overlap matrix are decomposed in terms of partial waves,

—((ﬁ|t|E)) = 2¢ 4+ 1D te(k)P¢(cosB), (2.4)
Eax + Egg ;; R
Fﬁﬁ(k, cos0) = 2(26 + 1) fe(k)Py(cosh), (2.5)

=0

where Py(cosf) are the Legendre polynomials. Then one can
rewrite the unitarity condition as

fe
Imt, = |‘C@|2 +—=.

2
Using sg := 1+ 2it,, which comes from the partial wave expansion

of the S-matrix element,

(2.6)

wk

(2.7)
E i+ Egi

(Blslk) =Y (2 + 1)s¢ P¢(cos ),
=0

the unitarity condition is equivalent to sys, =1 — 2 f,. If there is
not an inelastic channel, i.e. f; =0, then the unitarity condition
is reduced to sysg = 1. A comment in order [9,10] is that we can
define a pseudo-unitary two-body S-matrix with partial wave com-
ponents, w;w =1, by rescaling s; as wg :=s¢//1—2f;.

The partial wave expansion allows us to depict the integrated
elastic cross section, the integrated inelastic cross section and the
total cross section as

P
Oinet =5 )_RL+Dfe,

47 &
O =15 DU+ DI,
=0 £=0

47 &
Otot = k—22(2£+1)1m‘c@. (2.8)
=0
The differential elastic cross section is
dO’] 3
dte =1 D@L+ 1)L + )77} Py(cos0) Py (cos )
[N
|AI?
= s 29
647 sk? (29)

where A(s, t) is the scattering amplitude, s and t are the Mandel-
stam variables, and the scattering angle cos@ =1+ t/(2k?).

3. Entanglement entropy of two particles

_ We consider two unentangled particles, A and B, with momenta
k and I as incident particles. That is to say, we choose a single state
as an initial state;

lini) = [k, [) = |k)a ® [[)5. (3.1)

Here we have not taken the center-of-mass frame yet. Of course
the entanglement entropy of the initial state vanishes. In terms
of the S-matrix, the final state of two particles, |fin) = Q Slini), is
described as

@3p BG - . .\ -
fin) = L3V B.d1)SIkI).
|fin) (/ZEA;,ZEBa'p q)p QI) |k, )

(3.2)

Then we can define the total density matrix of the final state by
o :=N~"1fin)(fin|. The normalization factor A/ will be determined
later so that p satisfies tr trg p = 1. Tracing out p with respect
to the Hilbert space of particle B, we obtain the reduced density
matrix, pa := trg p, namely,

1 / d®p d3q d3p
PA=N | 2Ep5 2E5; 2B 45
x (B, q1SIk 1)k, 11STIB',G)) 1P ) an (Pl

_ Now let us adopt the center-of-mass frame, which leads to
k+1 =0. Then the initial state is |ini) = |k)), and the reduced den-
sity matrix becomes

_l/ d3p 50)8(p—k)
PAZN ] 2B 4k (E ¢ + Epp)

(3.3)

(B Is1kN > 15 ) aa (B 1

(3.4)
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