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We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It 
is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which 
plays a significant role in our computation. As a result, we obtain a novel formula that expresses the 
entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic 
and total cross sections and a physical bound on the impact parameter range, related to the elastic 
differential cross-section.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Entanglement is a significant concept which appears in vari-
ous subjects of quantum physics. The quantum entanglement has 
been attracting much attention of theoretical physicists, since re-
markable progress in the entanglement between the systems on 
two regions was made in quantum field theories [1] and holog-
raphy [2], and the intriguing conjecture called ER = EPR [3] was 
suggested. In the context of the ER = EPR conjecture, the entan-
glements between two particles, which are, for example, a pair 
of accelerating quark and anti-quark [4] and a pair of scattering 
gluons [5], have been studied. Then it naturally induces the fol-
lowing primitive question: How does the entanglement entropy of 
a pair of particles change from an initial state to a final one in an 
elastic channel of scattering process? It is qualitatively expected 
that the elastic collision of two initial particles, e.g., in a high en-
ergy collider, generates some amount of entanglement between the 
particles in the final state. We are interested in quantifying the en-
tanglement entropy generated by collision.

By just neglecting inelastic channels in weak coupling pertur-
bation [6], Ref. [7] analyzed such entanglement entropy in a field 
theory by the use of an S-matrix.1 In this article we exploit the 
S-matrix formalism further in order for a non-perturbative under-
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1 We quote for completion Ref. [8], where the entanglement entropy is discussed 

in a low energy decay process using different concept and method.

standing of the entanglement entropy in a scattering process with 
also an inelastic channel to be taken into account. This is especially 
required in the case of strong interaction scattering at high energy 
where inelastic multi-particle scattering contributes to a large part 
of the total cross-section, while elastic scattering is still important. 
The basic S-matrix formalism of strong interaction, as developed 
long time ago, e.g., in Refs. [9,10], allows us to find an approach to 
scattering processes without referring explicitly to an underlying 
quantum field theory.

Following Refs. [9,10], we consider a scattering process of two 
incident particles, A and B, whose masses are mA and mB respec-
tively, in 1 + 3 dimensions. This process is divided [9] into the 
following two channels:

“Elastic” channel: A + B → A + B

“Inelastic” channel: A + B → X

where X stands for any possible states except for the two-particle 
state, A +B. We postpone the study extended to a matrix including 
more varieties of two-particle channels [10] to a further publica-
tion.

The full Hilbert space of states is not usually factorized as 
Hfull = HA ⊗ HB ⊗ HX in an interacting system. However the 
Hilbert space of both the initial and final states is factorizable 
in the S-matrix formalism, because one considers only asymptotic 
initial and final states long before and after the interaction. We 
introduce the S-matrix, S , for the overall set of initial and final 
states. Once we fix an initial state |ini〉, the final state |fin〉 is 
determined by the S-matrix. In this article we are interested in 
the entanglement between two outgoing particles, A + B, in a final 
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state of elastic scattering in the presence of a non-negligible frac-
tion of open inelastic final states. Therefore we additionally intro-
duce a projection operator Q onto the two-particle Hilbert space 
HA ⊗ HB from Hfull . Then the final elastic state, in other words, 
the state of two outgoing particles, is described as |fin〉 = Q S|ini〉.

We employ the two-particle Fock space {|�p 〉A} ⊗ {|�q 〉B} as the 
Hilbert space HA ⊗ HB . The two-particle state which consists of 
particle A with momentum �p and B with �q is denoted by |�p, �q 〉 =
|�p 〉A ⊗ |�q 〉B . We define an inner product of the two-particle 
states in a conventional manner by 〈�p, �q |�k, �l 〉 = 2E A�pδ(3)(�p −
�k) 2E B�qδ(3)(�q −�l ), where E I �p =

√
p2 + m2

I (I = A, B) and p = |�p|.
We shall study the entanglement between the two outgo-

ing particles, A and B. When the density matrix of the final 
state on HA ⊗ HB is denoted by ρ , we define a reduced den-
sity matrix as ρA = trB ρ . Then the entanglement entropy is 
given by SEE = − trA ρA lnρA . The other way to calculate the en-
tanglement entropy is to use the Rényi entropy, SRE(n) = (1 −
n)−1 ln trA(ρA)n . It leads to the entanglement entropy described as 
SEE = limn→1 SRE(n) = − limn→1

∂
∂n trA(ρA)n .

2. Partial wave expansion

The partial wave expansion is often useful to analyze a scatter-
ing process. Before starting to study the entanglement entropy, let 
us recall what Refs. [9,10] studied.

We adopt a center-of-mass frame. The state of the two par-
ticles, A + B, which have momenta �p and −�p, is denoted by 
|�p 〉 〉 := |�p, −�p 〉, while the many-particle state of X is denoted 
by |X〉. Since the complete set of states is given by the orthogo-
nal basis, {|�p 〉 〉, |X〉}, one can describe the identity matrix as

1 =
∫

d3 �p
2E A�p2E B �pδ(3)(0)

|�p 〉〉〈〈�p| +
∫

dX |X〉〈X | . (2.1)

We notice that δ(3)(0) comes from 〈 〈�k|�l 〉 〉 = 2E A�k 2E B�k δ(3)(�k −
�l )δ(3)(0), due to our definition of the inner product of states.

One can expand the S-matrix elements in term of partial waves. 
Let us consider the S-matrix and T-matrix defined by S = 1 + 2iT . 
The unitarity condition is S†S = 1, which is equivalent to i(T † −
T ) = 2T †T . Extracting the factor of energy–momentum conserva-
tion, we describe the T-matrix elements as

〈〈�p|T |�q 〉〉 = δ(4)(P �p − P�q)〈〈�p|t|�q 〉〉 ,

〈〈�p|T |X〉 = δ(4)(P �p − P X )〈〈�p|t|X〉 . (2.2)

P �p and P X are the total energy-momenta of |�p 〉 〉 and |X〉 respec-
tively, which say P �p = (E A�p + E B �p, 0, 0, 0).

One introduces the overlap matrix F �p �k(k, cos θ),

F �p �k = 2πk

E A�k + E B�k

∫
dX〈〈�p|t†|X〉δ(4)(P X − P�k)〈X |t|�k〉〉 , (2.3)

where k and θ are defined by �p ·�k = pk cos θ and k = p. This matrix 
implies the contribution of the inelastic channel at the middle of 
the scattering process. The T-matrix element in the elastic channel 
and the overlap matrix are decomposed in terms of partial waves,

πk

E A�k + E B�k
〈〈�p|t|�k〉〉 =

∞∑
�=0

(2� + 1)τ�(k)P�(cos θ) , (2.4)

F �p �k(k, cos θ) =
∞∑

�=0

(2� + 1) f�(k)P�(cos θ) , (2.5)

where P�(cos θ) are the Legendre polynomials. Then one can 
rewrite the unitarity condition as

Imτ� = |τ�|2 + f�
2

. (2.6)

Using s� := 1 + 2iτ� , which comes from the partial wave expansion 
of the S-matrix element,

πk

E A�k + E B�k
〈〈�p|s|�k〉〉 =

∞∑
�=0

(2� + 1)s� P�(cos θ) , (2.7)

the unitarity condition is equivalent to s∗
� s� = 1 − 2 f� . If there is 

not an inelastic channel, i.e. f� = 0, then the unitarity condition 
is reduced to s∗

� s� = 1. A comment in order [9,10] is that we can 
define a pseudo-unitary two-body S-matrix with partial wave com-
ponents, ω∗

�ω� = 1, by rescaling s� as ω� := s�/
√

1 − 2 f� .
The partial wave expansion allows us to depict the integrated 

elastic cross section, the integrated inelastic cross section and the 
total cross section as

σel = 4π

k2

∞∑
�=0

(2� + 1)|τ�|2 , σinel = 2π

k2

∞∑
�=0

(2� + 1) f� ,

σtot = 4π

k2

∞∑
�=0

(2� + 1) Imτ� . (2.8)

The differential elastic cross section is

dσel

dt
= π

k4

∑
�,�′

(2� + 1)(2�′ + 1)τ�τ
∗
�′ P�(cos θ)P�′(cos θ)

= |A|2
64π sk2

, (2.9)

where A(s, t) is the scattering amplitude, s and t are the Mandel-
stam variables, and the scattering angle cos θ = 1 + t/(2k2).

3. Entanglement entropy of two particles

We consider two unentangled particles, A and B, with momenta 
�k and �l as incident particles. That is to say, we choose a single state 
as an initial state;

|ini〉 = |�k,�l 〉 = |�k〉A ⊗ |�l 〉B . (3.1)

Here we have not taken the center-of-mass frame yet. Of course 
the entanglement entropy of the initial state vanishes. In terms 
of the S-matrix, the final state of two particles, |fin〉 = Q S|ini〉, is 
described as

|fin〉 =
(∫

d3 �p
2E A�p

d3�q
2E B�q

|�p , �q 〉〈�p , �q |
)
S|�k,�l 〉 . (3.2)

Then we can define the total density matrix of the final state by 
ρ :=N−1|fin〉〈fin|. The normalization factor N will be determined 
later so that ρ satisfies trA trB ρ = 1. Tracing out ρ with respect 
to the Hilbert space of particle B, we obtain the reduced density 
matrix, ρA := trB ρ , namely,

ρA = 1

N

∫
d3 �p

2E A�p
d3�q

2E B�q
d3 �p′

2E A�p′

× (〈�p , �q |S|�k,�l 〉〈�k,�l |S†|�p′, �q 〉)|�p 〉A A〈�p′| . (3.3)

Now let us adopt the center-of-mass frame, which leads to 
�k +�l = 0. Then the initial state is |ini〉 = |�k〉 〉, and the reduced den-
sity matrix becomes

ρA = 1

N

∫
d3 �p

2E A�p
δ(0)δ(p − k)

4k(E A�k + E B�k)
∣∣〈〈�p |s|�k〉〉∣∣2|�p 〉A A〈�p | , (3.4)
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