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We use gauge-string duality to model the N-quark potential in pure Yang–Mills theories. For SU(3), the 
result agrees remarkably well with lattice simulations. The model smoothly interpolates between almost 
the �-law at short distances and the Y-law at long distances.
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1. Introduction

Predicting properties of hadrons still represents a serious chal-
lenge for Quantum Chromodynamics (QCD). Heavy quarks closely 
resemble static test charges and therefore are useful to probe con-
fining properties of QCD. So far, great progress has been made in 
the study of quarkonia, i.e. mesonic states that contain two heavy 
constituent quarks. In contrast, systems of three or more heavy 
quarks, which are a good starting point for understanding the phe-
nomenology of baryons and multi-quark bound states, are much 
less studied. In this case a key issue is whether multi-quark in-
teractions can be understood in terms of two-body interactions 
or whether there are genuine three- and many-body effects to 
be considered as part of the overall picture of strong interac-
tions [1,2].

The best known phenomenological models of the N-quark po-
tential are those of N = 3, the so-called � and Y-laws [3]. The 
�-law is based on pairwise interactions between quarks, while the 
Y -law is an example of three-body interactions. In the infrared re-
gion the former predicts that the potential grows linearly with the 
perimeter of the triangle formed by quarks [4], while the latter 
predicts a linear growth with the minimal length of a string net-
work which has a junction at the Fermat point of the triangle [5].

Until recently, lattice gauge theory was the premier method for 
obtaining quantitative and qualitative information about strongly 
interacting gauge theories. For the three-quark potential the accu-
racy of numerical simulations has been improved during the past 
decade [6–9] that provided evidence for the Y-law at long dis-
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tances. On the other hand, it is expected that at short distances 
the �-law is a good approximation to the potential [3,6]. How-
ever, what is still missing is a model which would incorporate the 
�-law at short distances and the Y -law at long ones.

In this Letter we present the first example of such a model. It 
continues a series of studies [10–12] devoted to the static poten-
tials in four-dimensional (pure) gauge theory by means of a five 
(ten)-dimensional effective string theory. Our reasons for continu-
ing to pursue this model are:

(1) Because there is no string theory which is dual to QCD. It 
would seem very good to gain what experience we can by solving 
any problems that can be solved within the effective string model 
already at our disposal.

(2) Because the results provided by this model are consistent 
with the lattice calculations and QCD phenomenology [13–15].

(3) Because analytic formulas are obtained by solving this 
model.

(4) Because it allows us to make predictions [16] which may 
then be tested by means of other methods, e.g., numerical simula-
tions.

Before proceeding to the detailed analysis, let us set the ba-
sic framework. As for the quark–antiquark potential, the static 
N-quark potential can be determined from the expectation value 
of a Wilson loop. The loop in question, baryonic loop, is defined 
in a gauge-invariant manner as WNQ = 1

N!εa1...aN εa′
1...a′

N

∏N
i=1 U aia

′
i , 

with the path-ordered exponents U aia
′
i along the lines shown in 

Fig. 1. In the limit T → ∞ the expectation value of the loop is sim-
ply 〈WNQ(C)〉 ∼ e−ET , with E the ground state energy of N quarks 
(N-quark potential).

In discussing baryonic Wilson loops, we adapt the formalism 
[17,18] proposed within the AdS/CFT correspondence [19] to our 
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Fig. 1. Left: A baryonic Wilson loop in SU(3) gauge theory. Right: In SU(4), a configuration used to calculate the expectation value of a baryonic loop. The quarks are set on 
the x-y plane. V is a baryon vertex located at r = r0 and S is its projection onto the x-y plane.

purposes. First, we take the following ansatz for the background 
geometry [20]

ds2 = esr2 R2

r2

(
dt2 + d	x2 + dr2) + e−sr2

g(5)

ab dωadωb , (1)

where d	x2 = dx2 + dy2 + dz2. This is a deformed product of AdS5
and an internal space (five-sphere) X whose coordinates are ωa . 
The deformation is due to the r-dependent warp factor, with s the 
deformation parameter. Such a deformation is a kind of the soft 
wall model of [21], where the violation of conformal symmetry 
is manifest in the background metric. In (1), there are two free 
parameters to be fitted to the results of numerical simulations or 
quarkonia spectra. Both fits look very good [13,14].

Next, we consider the baryon vertex which is a N-string junc-
tion. Since we are interested in a static quark potential, we choose 
static gauge and then make an ansatz for the action, describing a 
static configuration, of the form

Svert = m
e−2sr2

r
T , (2)

where m and s are parameters, r is independent of t , and T =∫ T
0 dt . In what follows, we will assume that quarks are placed at 

points on the boundary of 5-dimensional deformed AdS (at r = 0) 
but at the same point in the internal space. This assumption makes 
the problem effectively five-dimensional. Therefore the detailed 
structure of X is not important, except for the warp factor depend-
ing on the radial direction. The motivation for such a factor in (2)
is drawn from the AdS/CFT construction, where the baryon vertex 
is a 5-brane [17]. Taking a term 

∫
dtd5ω

√
g(6) from the world-

volume action of the brane results in T e−2sr2
/r if r is independent 

of t . This is, of course, a heuristic argument but, as we will see, the 
ansatz (2) is quite successful: it allows us to describe the results 
for N = 3 using just one parameter.

The expectation value of the Wilson loop is schematically given 
by the path integral over world-sheet fields

〈WNQ(C)〉 =
∫

D�e−S w , (3)

where S w is a total action of the Nambu–Goto strings and vertex. 
The strings are stretched between the quarks on the boundary and 
the baryon vertex in the interior, as sketched in Fig. 1. In principle, 
the integral can be evaluated approximately in terms of minimal 
surfaces that obey the boundary conditions. The result is written 
as 〈WNQ(C)〉 = ∑

n wn exp[−Sn], where Sn means a renormalized 
minimal area whose weight is wn .

2. Calculating the N-quark potential

We consider a situation in which N quarks are placed at the 
vertices of a regular N-sided convex polygon of side length L. This 
configuration has the symmetry group D N . Hence S is a center of 
the polygon and all the strings have an identical profile. To com-
pute the potential, we proceed along very similar lines to those 
of [12]. First, we take the static gauge that allows us to solve 
the equations of motion and determine the string profile. Next we 
extremize the action with respect to the location of the baryon 
vertex r0 that results in the no-force condition at r = r0. There is, 
however, one important distinction between the present calcula-
tion and those in the literature devoted to large N gauge theories. 
We make an assumption that the parameter m is negative. As a re-
sult, gravity pulls the vertex toward the boundary. This bends the 
strings and blunts the tip of the configuration [16], as shown in 
Fig. 1.

Having found the solution, we can compute the total energy of 
the configuration. At the end of the day we arrive at [16]

L(ν) = 2 sin
(π

N

)√
λ

s

[ 1∫
0

dv v2 eλ(1−v2)
(

1 − v4e2λ(1−v2)
)− 1

2

+
1∫

√
ν
λ

dv v2 eλ(1−v2)
(

1 − v4e2λ(1−v2)
)− 1

2
]

(4)

and

E(ν) = Ng

√
s

λ

[
κ

√
λ

ν
e−2ν − 1

+
1∫

0

dv

v2

(
eλv2

(
1 − v4e2λ(1−v2)

)− 1
2 − 1

)

+
1∫

√
ν
λ

dv

v2
eλv2

(
1 − v4 e2λ(1−v2)

)− 1
2
]

+ C , (5)

where ν = sr2
0 , g = R2

2πα′ , κ = m
Ng

, and C is a normalization con-

stant. λ is a function of ν and κ such that λ = −ProductLog[−νe−ν

(1 −κ2(1 +4ν)2e−6ν)− 1
2 ], where ProductLog(z) is the principal so-

lution for w in z = wew .1 Also note that ν ∈ [0, ν∗], with ν∗ a 
solution to ν2 = e2(ν−1)(1 − κ2(1 + 4ν)2e−6ν).

1 See, e.g., https :/ /reference .wolfram .com /language /ref /Pro-ductLog .html.
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