Physics Letters B 755 (2016) 312-315

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

750 GeV diphotons from closed string states

Luis A. Anchordoqui^{a,b,c,d}, Ignatios Antoniadis^{e,f}, Haim Goldberg^g, Xing Huang^h, Dieter Lüst^{i,j}, Tomasz R. Taylor^g

^a Department of Physics and Astronomy, Lehman College, City University of New York, NY 10468, USA

^b Department of Physics, Graduate Center, City University of New York, NY 10016, USA

^c Department of Astrophysics, American Museum of Natural History, NY 10024, USA

^d Departamento de Física, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata, Argentina

^e LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005 Paris, France

^f Albert Einstein Center, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern, Switzerland

^g Department of Physics, Northeastern University, Boston, MA 02115, USA

^h Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan

ⁱ Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München, Germany

^j Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, 80333 München, Germany

ARTICLE INFO

Article history: Received 31 December 2015 Received in revised form 10 February 2016 Accepted 11 February 2016 Available online 18 February 2016 Editor: M. Cvetič

ABSTRACT

We show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the standard model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS Collaborations. Under reasonable assumptions, we demonstrate that the excess could originate from a closed string (possibly axionic) excitation φ that has a coupling with gauge kinetic terms. We estimate the φ production rate from photon–photon fusion in elastic *pp* scattering, using the effective photon and narrow width approximations. For string scales above today's lower limit $M_s \approx 7$ TeV, we can accommodate the diphoton rate observed at Run II while maintaining consistency with Run I data.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

Very recently, ATLAS [1] and CMS [2] announced preliminary results on inclusive diphoton searches using (respectively) 3.2 fb⁻ and 2.6 fb⁻¹ of data recorded at a center-of-mass energy \sqrt{s} = 13 TeV. The two experiments observed an excess of events over expectations from standard model (SM) processes in the invariant mass spectrum at \approx 750 GeV. This could be interpreted as decays of new massive particle φ . For a narrow width approximation hypothesis, ATLAS gives a local significance of 3.6σ and a global significance of 2.0 σ when accounting for the look-elsewhere-effect in the mass range $M_{\varphi}/\text{GeV} \in [200-2000]$. Signal-plus-background fits were also implemented assuming a large width for the signal component. The most significant deviation from the backgroundonly hypothesis is reported for a mass of about 750 GeV and a width $\Gamma_{total}\approx 45$ GeV. The local and global significances evaluated for the large width fit are roughly 0.3 higher than those for the narrow width approximation fit, corresponding to 3.9σ

and 2.3 σ , respectively. CMS reports a local significance of 2.6 σ and a global significance smaller than 1.2 σ . The observed number of events corresponds to a production rate of $\sigma(pp \rightarrow \varphi + anything) \times \mathcal{B}(\varphi \rightarrow \gamma \gamma) \approx 3-6$ fb. The data at $\sqrt{s} = 13$ TeV prefer a cross section which is roughly 16 times larger than the one at $\sqrt{s} = 8$ TeV [3,4]. A wide-eyed fit to the $pp \rightarrow \gamma \gamma$ rates demonstrates that the data at $\sqrt{s} = 8$ TeV are incompatible with those at $\sqrt{s} = 13$ TeV at 95% CL if the cross section grows less than about a factor of 3.5 [5]. Note that the background from SM processes, which is dominated by $q\bar{q} \rightarrow \gamma \gamma$, increases by a smaller factor: $\sigma(pp \rightarrow \gamma \gamma) \approx 6$ fb at $\sqrt{s} = 8$ TeV and $\sigma(pp \rightarrow \gamma \gamma) \approx 14$ fb at $\sqrt{s} = 13$ TeV, after imposing $M_{\gamma\gamma} > 750$ GeV and standard cuts. Even though the excess is not statistical significant yet, it is interesting to entertain the possibility that it corresponds to a real signal of new physics.

A plethora of models have been proposed to explain the data including some string inspired scenarios [6,7]. Actually in [6] the new massive particle φ corresponds to a state on a 'hidden' sector brane in F-theory that couples to the SM gauge bosons via (open

0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

E-mail address: laa410@nyu.edu (L.A. Anchordoqui).

http://dx.doi.org/10.1016/j.physletb.2016.02.024

 Table 1

 Chiral spectrum of SM fields in the 4 stack D-brane model. We have added the right handed neutrino stretching between the lepton brane and the right brane.

Fields	Sector	Representation	Q_B	Q_L	Q_{I_R}	Qy
U_R	$3 \leftrightarrows 1^*$	(3, 1)	1	0	1	<u>2</u> 3
D_R	$3 \leftrightarrows 1$	(3, 1)	1	0	-1	$-\frac{1}{3}$
L_L	$4 \rightleftharpoons 2$	(1,2)	0	1	0	$-\frac{1}{2}$
E _R	$4 \leftrightarrows 1$	(1, 1)	0	1	-1	-1
Q_L	$3 \leftrightarrows 2$	(3, 2)	1	0	0	$\frac{1}{6}$
N_R	$4 \leftrightarrows 1^*$	(1, 1)	0	1	1	0
Н	$2 \leftrightarrows 1$	(1,2)	0	0	1	$\frac{1}{2}$

string) messengers between the visible and hidden sector branes; on the other hand, in [7] φ corresponds to an exotic open string state on the visible sector branes. One feature of most of this kind of open string explanations is that the necessary coupling φF^2 is a priori forbidden by the U(1) charge conservation in the open string D-brane sector, unless the U(1) is spontaneously broken by the expectation value of φ that has Yukawa couplings to the messengers. (*F* is the photon field strength.)

Herein we put forward an alternative solution from string theory, namely that φ corresponds to a closed string state. Namely we consider extensions of the SM based on D-brane string compactifications with large extra dimensions [8]. The basic unit of gauge invariance for D-brane constructions is a U(1) field, so that a stack of N identical D-branes eventually generates a U(N) theory with the associated U(N) gauge group; for N = 2, the gauge group can be $Sp(1) \cong SU(2)$ rather than U(2) [9,10]. In the presence of many D-brane types, the gauge group becomes a product form $\prod U(N_i)$, where N_i reflects the number of D-branes in each stack. In the perturbative regime, gauge interactions emerge as excitations of open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes.

Our explanation of the peak in the diphoton invariant mass spectrum is independent of the structure of the D-brane model. Nevertheless, to motivate the discussion we adopt a minimal model containing 4 stacks of D-branes. The basic setting of the gauge theory is given by $U(3)_C \times Sp(1)_L \times U(1)_L \times U(1)_{I_R}$ [11–13]. In the bosonic sector the open strings terminating on the QCD stack contain, in addition to the $SU(3)_C$ octet of gluons g^a_{μ} , an extra U(1) boson C_{μ} , most simply the manifestation of a gauged baryon number. The $Sp(1)_L$ stack is a terminus for the electroweak gauge bosons W^a_{μ} . The $U(1)_Y$ boson Y_{μ} that gauges the usual electroweak hypercharge symmetry is a linear combination of C_{μ} , and the U(1) bosons B_{μ} and X_{μ} terminating on the separate $U(1)_L$ and $U(1)_{I_R}$ branes. The general properties of the chiral spectrum are summarized in Table 1.

One can check by inspection that the hypercharge,

$$Q_Y = \frac{1}{2}Q_{I_R} + \frac{1}{6}Q_B - \frac{1}{2}Q_L, \qquad (1)$$

is anomaly free. However, the Q_B (gauged baryon number) is not anomaly free and we expect this anomaly to be canceled via a Green–Schwarz mechanism involving the exchange of twisted Ramond–Ramond (RR) closed string states [14–18]. There is an explicit mass term in the Lagrangian for the new gauge field $-\frac{1}{2}M'^2Y'_{\mu}Y'^{\mu}$ whose scale comes from the compactification scheme. The scalar that gets eaten up to give the longitudinal polarization of the Y' is a closed string field and there is no extra Higgs particle [19]. In addition to the intermediate RR field, which is absorbed by the Y' in the anomaly cancellation, there is a closed string mode φ which couples to the anomaly free combination of the hypercharge (1). It can be either a scalar field from the Neveu–Schwarz sector that is complexified with the RR state absorbed by Y', or another RR pseudo-scalar (axion) coupled to $F\tilde{F}$.

In this Letter we propose that the observed diphoton excess originates from the closed string excitation φ . There are two properties of the scalar φ that are necessary for explaining the 750 GeV signal. It should be a special closed string state with dilaton-like or axion-like coupling to F^2 (respectively to $F\tilde{F}$) of the electromagnetic field, but *decoupled* from F^2 of color SU(3). The couplings of closed string states to gauge fields do indeed distinguish between different D-brane stacks, depending on the localization properties of D-branes with respect to φ in the compact dimensions. More specifically, it is quite natural to assume that φ is a closed string mode that is associated to the wrapped cycles of the $U(1)_L$ and $U(1)_{I_R}$ stack of D-branes, however is not or only weakly attached to the wrapped cycle of $Sp(1)_L$ or the color SU(3)stack of D-branes. In this way, we can avoid unwanted dijet signals¹. Furthermore, since the string mass scale is now known to be larger than $M_s \approx 7$ TeV [20], the mass $M_{\varphi} \approx 750$ GeV must be suppressed with respect to the string scale by some anomalous loop corrections. Because φ is a twisted closed string localized at an orbifold singularity, its coupling to $\gamma \gamma$ should be suppressed by $M_{\rm s}^{-1}$, provided the bulk is large [21]. With this in mind, we parametrize the coupling of φ to the photon by the following vertex

$$\frac{c_{\gamma\gamma}}{c_{\gamma\gamma}}\varphi F^2,$$
 (2)

where $v \sim M_s$. To remain in the perturbative range, we also require $c_{\gamma\gamma}$ to be reasonably small. The partial decay width of φ to diphotons then follows as

$$\Gamma_{\gamma\gamma} = \frac{c_{\gamma\gamma}^2}{4\pi} \frac{M_{\varphi}^3}{v^2}.$$
(3)

The diphoton signal is produced via photon–photon fusion with φ as the resonance state [22,23]. The simplest way to get a reliable estimate of $\sigma(pp \rightarrow \gamma\gamma)$ is provided by the equivalent photon approximation (originally due to Fermi [24] and later on developed by Weizsäcker [25] and Williams [26]). Under the narrow width approximation, the cross section is found to be

$$\sigma(pp \to pp\gamma\gamma) = \frac{8\pi^2}{M_{\varphi}} \frac{\Gamma_{\gamma\gamma}^2}{\Gamma_{\text{total}}} \int dx_1 \, dx_2 \, f_s^{\gamma}(x_1) \, f_s^{\gamma}(x_2) \, \delta(x_1 x_2 s - M_{\varphi}^2) \,, \qquad (4)$$

where $f_s^{\gamma}(x_1)$ is the photon distribution function, which for small x takes the following approximate form

$$f_s^{\gamma}(x)dx = \frac{dx}{x}\frac{2\alpha}{\pi}\log\left[\frac{q_*}{m_p}\frac{1}{x}\right],\tag{5}$$

where $\alpha \approx 1/129$, m_p is the proton mass, and q_* is the inverse of the minimum impact parameter for elastic scattering [27,28]. Following [23] we consider the range 130 MeV < q_* < 170 MeV, which accommodates the LHC two photon Higgs production cross section. The total cross sections are

$$\sigma_{\sqrt{s}=13 \text{ TeV}} = 162 \text{ fb} \left(\frac{\Gamma_{\text{total}}}{45 \text{ GeV}}\right) \mathcal{B}^2(\varphi \to \gamma \gamma), \qquad (6)$$

¹ We may note in passing that if an excess of dijet events is observed in future LHC data, this can be easily accommodated by coupling φ to F^2 of $SU(3)_C$ changing the localization properties of D-branes with respect to φ in the internal space.

Download English Version:

https://daneshyari.com/en/article/1850331

Download Persian Version:

https://daneshyari.com/article/1850331

Daneshyari.com