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We explore unified field theories based on the gauge groups SU(5) and SO(10) using the worldline ap-
proach for chiral fermions with a Wilson loop coupling to a background gauge field. Representing path 
ordering and chiral projection operators with functional integrals has previously reproduced the sum over 
the chiralities and representations of standard model particles in a compact way. This paper shows that 
for SU(5) the 5 and 10 representations – into which the Georgi–Glashow model places the left-handed 
fermionic content of the standard model – appear naturally and with the familiar chirality. We carry out 
the same analysis for flipped SU(5) and uncover a link to SO(10) unified theory. We pursue this by ex-
ploring the SO(10) theory in the same framework, the less established unified theory based on SU(6) and 
briefly consider the Pati–Salam model using SU(4) × SU(2) × SU(2).

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The worldline formalism [1,2] is a first quantised approach to 
field theory and offers a powerful alternative tool for theoreti-
cal calculations. Quantities in the field theory are re-expressed 
as one-dimensional quantum mechanical transition amplitudes of 
spinning point particles. In this context, a recent model of chiral 
fermions demonstrated an interesting way of summing over the 
gauge group representations and chiralities present in the stan-
dard model [3]. This sum was constructed for a single generation 
of fermions supplemented by a sterile neutrino. The model is sub-
stantially different from the usual field theory approach because 
the assignment of particles to their group representations and chi-
ralities arises naturally, rather than being pre-determined by hand. 
The model also has a computational simplicity compared to more 
traditional methods in field-theory which require the evaluation of 
a complicated sum over these representations. Instead that sum is 
generated through the evaluation of a single functional determi-
nant. In this letter we will generalise that result by considering a 
variety of other symmetry groups that are familiar from previous 
studies into grand unified theories.

Progress in the worldline description of chiral particles is cen-
tral to a formulation of the standard model in first quantised 
language, where the worldline formalism can offer significant com-
putational advantages over calculations in perturbative quantum 
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field theory [4,5]. Furthermore the first quantised model presented 
in [3] has an underlying string theory [6] which generalises to non-
Abelian interactions so it is natural to consider the consequences 
of using different symmetry groups in that context.

The motivation for considering alternative gauge groups is the 
unification of the electroweak and strong interactions. The pur-
pose of this unification is to find a theory with only one coupling 
constant, from which the standard model emerges after sponta-
neous symmetry breaking as a low-energy effective theory [7]. The 
gauge group with smallest rank that can accommodate the stan-
dard model is SU(5). This is the famous Georgi–Glashow model 
[8]. We shall demonstrate that the representations and chiralities 
of the standard model particles as described by the standard SU(5)

and flipped SU(5) unified theories can also be generated with the 
new approach of [3].

The main results we shall arrive at for the representations and 
chiralities of standard model particles will be found to agree with 
well-known results in the literature. They can be arrived at by a 
variety of other group theoretic methods but we believe that the 
relative compactness of the new approach, combined with the fact 
that particle multiplets are no longer arbitrarily chosen, means that 
this approach has some merit as a complementary tool to more 
conventional methods.

This letter is laid out as follows. The next section briefly re-
views the argument and notation in [3] and in Section 3 the model 
is applied to the unified theories of SU(5) and flipped SU(5). We 
also consider other unified theories which appear in the literature, 
namely SU(6), SO(10) and SU(4) × SU(2) × SU(2).

http://dx.doi.org/10.1016/j.physletb.2015.09.038
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2. Fields and worldlines

We consider a left- or right-handed massless fermion moving in 
a background gauge field, A. We take A to transform in the adjoint 
representation of some symmetry group which is described by 
anti-Hermitian Lie algebra generators {T S }. Working in Euclidean 
space, the action for a left-handed massless fermion field, ξ , is

S
[
ξ̄ , ξ

] =
∫

d4x iξ †σ̄ · Dξ (1)

where D = (∂ + A) and σμ = (
1, σ i

)
make up the Euclidean Dirac 

operator σ̄ · D (the coupling strength is absorbed into A). Following 
the worldline approach requires us to functionally integrate over 
the matter field to arrive at the effective action � [A]. In this case, 
however, we must avoid the well-known problem of how to define 
the determinant of the Dirac operator acting on chiral fermions 
transforming in a non-real representation of the gauge group. We 
can, however, define the phase-difference of determinants which 
motivates us to consider the variation of the effective action under 
an infinitesimal change in A [9,10]. This is easily found to be

δA� [A] = δA ln
∫

D
(
ξ̄ , ξ

)
e−S

[
ξ̄ ,ξ

]

= Tr
(
(σ̄ · D)−1 σ̄ · δA

)
(2)

which can be written in terms of γ -matrices1 as

−
∞∫

0

dT Tr

(
(1 − γ5)

2
eT (γ ·D)2

γ · D γ · δA

)
. (3)

We recognise in (3) the heat kernel of the operator (γ · D)2 =
D21 + 1

2 γ μ Fμνγ
ν and in [3] a worldline representation of this 

expression was derived:

δA�[A] = −
∞∫

0

dT

T

∮
L/R

DωDψ e−S[w,ψ]

× P tr

⎛
⎝g (2π)

2π∫
0

dt ψ · ω̇ ψ · δA

⎞
⎠ . (4)

Here ωμ (t) describes a point particle traversing a closed loop 
(which generates the functional trace) and the Grassmann vari-
ables ψμ are the spin degrees of freedom living on that worldline. 
The action S [w,ψ] is just a gauge fixed version of Brink, Di Vec-
chia and Howe’s description [11] of the dynamics of a spin 1/2
point particle:

S [ω,ψ] = 1

2

2π∫
0

ω̇2

T
+ ψ · ψ̇ dt , (5)

from which the integration measure dT
T in (4) can be understood 

as the Faddeev–Popov determinant associated with the fixing of a 
local worldline supersymmetry.

Upon quantisation the fundamental anti-commutation relations {
ψμ,ψν

} = δμν can be solved by taking ψμ = 1√
2
γ μ which shows 

that the role of the ψμ is to represent the γ -matrices. The cou-
pling of the fermion to the gauge field is provided by g (t) – this is 
the super-Wilson loop which is familiar from quantum field theory 
and is often encountered in the worldline approach [1]:

1 We use γ 0 =
(

0 1
1 0

)
and γ j =

(
0 iσ j

iσ̄ j 0

)
.

g (t) = P exp

⎛
⎝−

t∫
0

AS(t)T S dt

⎞
⎠ (6)

where

A = ω̇ · A + T

2
ψμFμνψν. (7)

The L/R subscript in (4) denotes the boundary conditions on ψ
which are interpreted depending on the chirality of the fermion. 
For left-handed fermions the path integral with periodic bound-
ary conditions on ψ is subtracted from that with anti-periodic 
boundary conditions whereas for right-handed fermions the two 
contributions are summed. These combinations insert the appro-
priate projection operators 1 ∓γ 5 into the path integral. For a field 
theory describing a number of different particles, such as the stan-
dard model, one would also need to form the sum of (4) over the 
representations and chiralities of the full matter content. This sum-
mation needs to be implemented manually and is determined by 
the theorist’s choice of the assignment of particles into their mul-
tiplets.

The path ordering prescription in (6) is required in a non-
Abelian theory to ensure gauge invariance of the coupling to the 
gauge field but it complicates the evaluation of the functional in-
tegrals. The conventional way to deal with the non-Abelian nature 
of the coupling is to perturbatively expand the effective action and 
to impose the path ordering by hand [2,12,13]. However, there are 
other approaches to dealing with the non-commutative character 
of the Wilson-loop exponent such as by the introduction of addi-
tional Grassmann fields [14]. This was the approach taken in [3]
which we now review.

The path ordering can be represented with functional integrals 
by introducing a set of anti-commuting operators φ̃r and φs satis-
fying {φ̃r, φs} = δrs with action Sφ = ∫

φ̃ · φ̇ dt [15–17]. It is easy to 
check the following definition furnishes us with a representation 
of the Lie algebra

R S ≡ φ̃r T S
rsφs;

[
R S , RT

]
= i f ST U RU , (8)

which can be used to absorb the gauge group indices in the 
Wilson-loop exponent. So instead of working directly with (4) we 
will find it advantageous to combine the above ideas to consider 
as it stands the related quantity
∞∫

0

dT

T

∫
DωDψ e−S[w,ψ]

2π∫
0

dt ψ · ω̇ ψ · δA
δZ [A]

δA
(9)

where

Z [A] =
∫

D φ̃Dφ e
− ∫ 2π

0 φ̃
(

d
dt +A

)
φ

(10)

is responsible for producing the interaction between the fermion 
and the gauge field.

This theory has been studied using worldline techniques before 
[18,19], where the focus has been on its canonical quantisation. In 
particular, the Fock space built by acting on the vacuum with anti-
commuting creation operators can be described by wave function 
components which transform as anti-symmetric tensor products of 
the representation of the gauge group generators. Acting on wave 
functions of the form (x, φ̃) the creation and annihilation oper-
ators can be represented by φ† = φ̃ and φ = ∂φ̃ . Then the wave 
functions have a finite Taylor expansion

(x, φ̃) =
(x) + φ̃r1

r1(x) + φ̃r1 φ̃r2
[r1r2](x) +. . .+ φ̃r1 φ̃r2..φ̃rN [r1r2..rN ](x)

(11)
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