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Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies 
on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because 
sample entropy does not give precise estimation of entropy when short signals are processed. A refined 
composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE 
is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often 
over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE 
to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better 
performances over the standard multivariate MSE.

© 2016 Elsevier B.V. All rights reserved.

Several entropy measures have been proposed to assess the 
regularity of times series. Among them, we can cite the sample 
entropy [1]. Sample entropy is equal to the negative of the nat-
ural logarithm of the conditional probability that sequences close 
to each other for m consecutive data points will also be close to 
each other when one more point is added to each sequence [1]. 
However, sample entropy operates on a single scale. Real world 
data, as physiological data, exhibit high degree of structural rich-
ness. Studies based on a single scale are therefore not adapted for 
real world signals. Analyses on multiple time scales have become 
necessary. In the 2000s, Costa et al. proposed the multiscale en-
tropy (MSE) to quantify complexity over multiple scales [2,3]. The 
MSE algorithm is composed of two steps [2,3]: (i) a coarse-graining 
procedure to derive a set of time series representing the system 
dynamics on different time scales. The coarse-graining procedure 
for scale τ is obtained by averaging the samples of the time se-
ries inside consecutive but non-overlapping windows of length τ ; 
(ii) the computation of the sample entropy for each coarse-grained 
time series. MSE has become a prevailing method to quantify the 
complexity of signals. It has been shown through several studies 
that MSE is able to underline the general loss of complexity be-
havior when a living system changes from a healthy state to a 
pathological state [2,3].

Nevertheless, the coarse-graining procedure used in the MSE al-
gorithm shortens the length of the data that are processed: for an 
original time series of N samples, the length of the coarse-grained 
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time series at a scale factor τ is N/τ . It has been reported that 
for an embedding dimension m = 2, the sample entropy is signif-
icantly independent of the time series length when the number 
of data points is larger than 750 [4]. For shorter time series, the 
variance of the entropy estimator may grow very fast with the re-
duction of the number of data points. Therefore, at large scales, the 
coarse-grained time series may not be adequately long to obtain an 
accurate value for the sample entropy. Moreover, for some cases, 
the sample entropy value may not be defined because no template 
vectors are matched to one another. These two drawbacks (inac-
curate or undefined sample entropy values) lead to problems of 
accuracy and validity of MSE at large scales. In order to overcome 
the accuracy concern of MSE, Wu et al. proposed the composite 
MSE (CMSE) [5]. In the CMSE algorithm, all coarse-grained time 
series for a scale factor τ are processed to compute their sample 
entropy (each of the τ coarse-grained time series corresponding 
to different starting points of the coarse-graining process is used 
in the CMSE algorithm whereas, in the conventional MSE algo-
rithm, for each scale, only the first coarse-grained time series is 
taken into account). The CMSE value for a given scale is there-
fore defined as the mean of several entropy values [5]. Therefore, 
CMSE estimates entropy more accurately than MSE. Unfortunately, 
CMSE increases the probability of inducing undefined entropy. This 
is why a refined CMSE (RCMSE) algorithm has been proposed in 
2014, see below [6].

However, MSE, CMSE, and RCMSE are able to process univari-
ate data only. For multivariate time series, the three algorithms 
treat individual time series separately. This may be satisfactory 
only if the individual signals are statistically independent or at 
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least uncorrelated, which is often not the case when real world 
signals from a given system are registered simultaneously. To over-
come this shortcoming, an extension of the MSE algorithm to 
multivariate data has been proposed in 2011: the multivariate 
MSE (MMSE) [8,9]. MMSE is able to operate on any number of 
data channels and provides a robust relative complexity measure 
for multivariate data [8,9]. MMSE has been used in studies from 
different fields [10–13]. However, the same concerns as MSE are 
found in MMSE. This is why in this work we propose an exten-
sion of the RCMSE algorithm to a more general case. To this end, 
we introduce the multivariate RCMSE (MRCMSE), and evaluate its 
performances on synthetic multivariate processes.

1. Multivariate refined composite multiscale entropy

1.1. Refined composite multiscale entropy

RCMSE aims at improving the CMSE algorithm because, as 
mentioned previously, CMSE estimates entropy more accurately 
than MSE but increases the probability of inducing undefined en-
tropy [6,7].

For a discrete time series x = {xi}N
i=1, the RCMSE algorithm is 

based on the following three steps [6]

1. the kth coarse-grained time series for a scale factor τ is de-
fined as y(τ )

k = {yk, j}N/τ
j=1 where [5]

y(τ )

k, j = 1

τ

jτ+k−1∑
i=( j−1)τ+k

xi, 1 ≤ j ≤ N

τ
,1 ≤ k ≤ τ (1)

2. for each scale factor τ , and for all τ coarse-grained time 
series, the number of matched vector pairs nm+1

k,τ and nm
k,τ

is computed, where nm
k,τ represents the total number of 

m-dimensional matched vector pairs and is computed from 
the kth coarse-grained time series at a scale factor τ

3. RCMSE is then defined as [6]

RCMSE(x, τ ,m, r) = − ln

(∑τ
k=1 nm+1

k,τ∑τ
k=1 nm

k,τ

)
. (2)

Using the same notation, CMSE is defined as [6]

CMSE(x, τ ,m, r) = 1

τ

τ∑
k=1

(
− ln

nm+1
k,τ

nm
k,τ

)
. (3)

The CMSE value is therefore undefined when one of the val-
ues nm+1

k,τ or nm
k,τ is zero. By opposition, RCMSE value is unde-

fined only when all nm+1
k,τ or nm

k,τ are zeros. It has been reported 
that RCMSE outperforms CMSE in validity, accuracy of entropy 
estimation, independence of data length, and computational effi-
ciency [6]. RCMSE has been used in recent studies [14].

1.2. Multivariate multiscale entropy

MMSE is an extension of the MSE algorithm to multivariate 
data. MMSE relies on the same steps as MSE [8,9]: (i) a coarse-
graining procedure; (ii) a sample entropy computation for each 
coarse-grained time series. However, due to the multivariate na-
ture of the data processed by MMSE, these two steps are adapted 
to multivariate signals. Thus, for the coarse-graining procedure, 
temporal scales are defined by averaging a p-variate time series 
{xl,i}N

i=1 (l = 1, . . . , p is the channel index and N is the number of 
samples in every channel) over non-overlapping time segments of 
increasing length. Thus, for a scale factor τ , a coarse-grained multi-
variate time series is computed as y(τ )

l, j = 1
τ

∑ jτ
i=( j−1)τ+1 xl,i where 

1 ≤ j ≤ N/τ , and the channel index l goes from 1 to p. For the en-
tropy computation, the multivariate sample entropy (MSampEn) is 
used for each coarse-grained multivariate. The MSampEn algorithm 
is an extension of the univariate sample entropy [1]. For a toler-
ance level r, MSampEn is calculated as the negative of the natural 
logarithm of the conditional probability that two composite delay 
vectors close to each other in a m dimensional space will also be 
close to each other when the dimensionality is increased by one. 
The detailed MSampEn algorithm can be found in [8,9].

1.3. Multivariate refined composite multiscale entropy

Based on RCMSE and MSampEn, we define the MRCMSE algo-
rithm as follows:

1. for a p-variate time series {xl,i}N
i=1, l = 1, . . . , p, where p de-

notes the number of variates (channels) and N is the number 
of samples in each variate, and for a scale factor τ , determine 
the coarse-grained multivariate time series {y(τ )

l,k, j}N/τ
j=1 as

y(τ )

l,k, j = 1

τ

jτ+k−1∑
i=( j−1)τ+k

xl,i, (4)

where 1 ≤ j ≤ N/τ , 1 ≤ k ≤ τ , l = 1, . . . , p
2. for each coarse-grained multivariate compute Bm(r) and

Bm+1(r) as defined in Table 1 [8,9]. For the coarse-grained 
multivariate {y(τ )

l,k, j}N/τ
j=1 , l = 1, . . . , p, these two quantities are 

denoted as Bm
k,τ (r) and Bm+1

k,τ (r), respectively

3. compute RCMSE(τ , M, r, ε, N) = − ln

(∑τ
k=1 Bm+1

k,τ (r)∑τ
k=1 Bm

k,τ (r)

)
.

2. Results and discussion

In order to analyze the behavior of MRCMSE on multivariate 
data, we generated a trivariate time series, where originally all 
the data channels were realizations of mutually independent white 
noise [8]. We then gradually decreased the number of variates rep-
resenting white noise (from 3 to 0) and simultaneously increased 
the number of data channels representing independent 1/ f noise 
(from 0 to 3), as already proposed in [8,9]. The total number of 
variates was always three. For each kind of trivariate data, 50 in-
dependent realizations were simulated and, for each realization, 
10 000 samples were generated in each variate. Scales were cho-
sen between 1 and 20. Therefore, the shortest coarse-grained time 
series had a length of 500 samples. For each channel the embed-
ding dimension mk was chosen equal to 2 and the threshold r was 
fixed to 0.15 × (standard deviation of the normalized time series) 
for each data channel. We recall that a multivariate time series 
is considered more structurally complex than another if, for most 
of the scale factors τ , its multivariate entropy values are higher 
than those of the other time series. When the multivariate entropy 
values decrease with the scale factor τ , the time series that is pro-
cessed only contains information at the smallest scales. It is thus 
not structurally complex. This is the same as what is observed 
for the univariate MSE where sample entropy values of random 
white noise (uncorrelated) decrease with the scale factor whereas 
for 1/ f noise (long-range correlated), the sample entropy values 
are constant over multiple scales.

For each above-mentioned simulated trivariate data, MRCMSE 
and MMSE were determined. The results are presented in Fig. 1. 
We observe that MRCMSE and MMSE curves are close to each 
other. Moreover, the higher the number of variates representing 
1/ f noise, the higher the multivariate entropy value, for a given 
scale factor τ . This is in accordance with what was expected. This 
behavior is the same for MRCMSE and MMSE.
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