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We report the existence of amplitude death in a network of identical oscillators under repulsive 
mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with 
instantaneous repulsive mean coupling only when the number of oscillators is more than two. We 
further investigate that, amplitude death may emerge even in two coupled oscillators as well as network 
of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived 
the region of amplitude death island and find out how strength of delay controls the death regime 
in two coupled or a large network of coupled oscillators. We have verified our results on network of 
delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our 
coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Oscillation quenching is an important, fundamental and emer-
gent phenomena for coupled oscillatory systems [1,2]. Suppressing 
oscillations of coupled systems and achieving desired stable states 
are the key features of neuronal interaction [3], lasers [4], cellu-
lar differentiation [5], even in optical experiments [6]. These stable 
states are distinctly classified into two categories: Amplitude death 
(AD) where all the oscillators collapse to single fixed point and 
oscillation death (OD) where all the oscillators stabilize to new 
multiple fixed points which are created due to interactions [1,7]. 
To stabilize the fixed points (creation of AD or OD) in coupled os-
cillatory systems, two control strategies are highly used in respect 
to nonlinear research. One is to introduce parameter mismatch 
in diffusively coupled oscillators [8,9] and the other is sufficient 
time delayed interaction in coupled identical oscillators [10]. In 
last decade, other strategies are also implemented for suppression 
of oscillations: conjugate coupling [11], environment coupling[12], 
dynamic coupling [13], mean-field coupling [14], nonlinear cou-
pling [15] and an effect of additional repulsive link [7] and mixed 
type coupling [16] in diffusively coupled oscillators. Amplitude 
death scenario is also reported under partially time-delayed cou-
pling [17] and mixed time-delayed coupling [18].
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In the oscillation quenching state, each dynamical oscillatory 
unit of a coupled network loses it oscillation by reaching stable 
fixed points (AD or OD) due to the coupling interaction. This os-
cillation quenching state has many potential applications in real 
systems where the oscillation is an unwanted situation. This is im-
portant to suppress the unwanted oscillations in laser systems [2], 
synthetic genetic oscillator [19], cellular differentiation [5] etc.

We emphasize here that, most of the stabilization techniques 
introduced for cessation of oscillation (using delayed or non-
delayed interaction) have been devoted to attractively coupled 
dynamical elements since the entrainment between oscillators is 
one of the main concerns. However, in some cases, the coupling 
can be considered as repulsive when negative sign in the cou-
pling strength repels each other resulting in out-phase behavior. 
Anti-phase synchronization is observed with strong repulsive in-
teraction [20] and also verified experimentally in the electrically 
coupled biological neurons [21]. For example, it is well known that 
biological networks are connected attractively (which is consid-
ered to be related to excitatory synapses) and repulsively (which 
is considered to be related to inhibitory synapses) to improve syn-
chronization and transmission performance in the brain [22]. Fir-
ing pattern including multistability and chaotic firing is observed 
in coupled excitable neurons when they are coupled repulsively 
[23]. Another important example of repulsive coupling in biolog-
ical sciences is in the interaction between the ion channels of a 
cell membrane containing voltage dependent ion channels [24]. In 
a population of synthetic genetic oscillators, they are suppressed 
by phase repulsive coupling [25]. On the other hand solitary state 
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emerges in networks of globally coupled identical oscillators with 
repulsive and attractive coupling [26]. Recently, Hens et al. [27]
have observed the death scenario (transition from amplitude to 
oscillation death) in diffusively coupled identical oscillators un-
der additional repulsive links. Remarkably, this type of transition is 
also verified and tested in a case of a novel cyclic interaction when 
an asymmetry is introduced in terms on negative parameter mis-
match [28]. So far, to the best of our knowledge, in all the existing 
works on amplitude death are based on attractive instantaneous or 
time-delayed diffusive coupling and no one has checked how the 
oscillatory dynamics of a network can be controlled or suppressed 
when links are repulsively connected only.

In this letter, we concentrate on death scenario between net-
work of identical oscillators using repulsive mean coupling. Here 
the repulsive mean coupling is expressed by the average of two 
neighboring state as k(x + y) between the two coupled systems 
ẋ = f (x) and ẏ = f (y); x ∈ Rn , y ∈ Rn , where the coupling strength 
k is negative sign. Anti-phase synchronization emerges when two 
identical oscillators are interacted via repulsive mean coupling 
[29]. To testify the effect of repulsive mean interaction, we have 
chosen a delayed Mackey Glass oscillator [30] as a chaotic model 
and Landau–Stuart as well as Van der Pol (VDP) oscillator [8,10,31]
as limit cycle models. Both the systems have trivial fixed points 
at origin. Our objective is to stabilize these trivial fixed points 
i.e. creating amplitude death in network where the links are re-
pulsively connected only. We identify that instantaneous repulsive 
mean coupling induces amplitude death in a network of identical 
oscillators when the number of oscillators is more than two. For 
two identical oscillators, amplitude death may be generated if we 
introduce a coupling delay in the repulsive mean coupling. More 
surprisingly, we check that a mixture of diffusive and repulsive de-
lay interaction may control (increase or decrease) the death island 
for two coupled oscillators.

The plan of the letter is as follows: In next Sec. 2, we discuss 
amplitude death scenario in network of identical Mackey–Glass 
systems [30] where the parameters of the systems are chosen in 
hyperchaotic regime. For simplicity we first observe that the time-
delay or non-time delayed repulsive mean coupling can induce 
amplitude death in three coupled oscillators for a certain coupling 
strength where as, in two coupled oscillators, a delay coupled re-
pulsive interaction is necessary to create AD. Next we will discuss 
that, if we introduce a time-delay interaction in the repulsive mean 
coupling, reviving of oscillation from AD state is also a possible 
scenario after a certain critical coupling. We further show that, de-
lay or non-delay repulsive interaction may induce AD in a network 
of coupled Mackey–Glass oscillators of size 100. Next we check, 
how delayed or non-delayed repulsive interaction affects in the 
network of limit cycle oscillators. As a paradigmatic model, we 
have chosen coupled Stuart–Landau oscillators in Sec. 3. In that 
network of size N , the characteristic equation for the stabilization 
of fixed points has been derived analytically. At first, to track the 
proper death island, our analytical prediction has been validated 
with two Stuart–Landau oscillators when they are coupled via de-
layed repulsive interaction is symmetrically or asymmetrically. We 
find out the amplitude death region in (τ , k) plane for different 
values of asymmetric parameter p. We have checked that size of 
the death region is controlled by the asymmetric (p) delayed ef-
fect. Further we validate our coupling scheme and analytical result 
in a network of 100 Stuart–Landau oscillators. Next the effect of 
delayed/non-delayed repulsive interaction is also verified in an-
other network of limit cycle oscillators: Van der Pol oscillator in 
Sec. 4. The analytical prediction of death island in a small network 
of size three has been checked in the absence of delay coupling. 
Further a τ–k space is drawn to isolate the death island in a large 
network (size 100) of Van der Pol oscillator. In the Sec. 5, effect 

of mixed delay repulsive mean coupling is discussed using Stuart–
Landau oscillator. Finally, we summarize our results in Sec. 6.

2. Network of coupled identical chaotic oscillators under 
repulsive mean coupling

We construct a general framework of globally coupled network 
of oscillators under repulsive delay coupling as

Ẋ j = F (X j) − k
N∑

m=1,m �= j

[Xm(t − τm) + X j], j = 1,2, . . . , N (1)

where Ẋ j = F (X j) governs the local dynamics of the vector field 
X j in each node, k(> 0) is the repulsive coupling strength, N is 
the number of oscillators in the network, and τ1, τ2, . . . , τN are 
the delay times in the repulsive mean coupling.

First, we examine whether our proposition of repulsive de-
lay interaction scheme may work on coupled chaotic oscillators. 
To elaborate the effect of the coupling scheme we use coupled 
Mackey–Glass oscillators [30] (as chaotic model). The network of 
oscillators under delayed repulsive mean coupling is written as

ẋ j = −ax j + bx j(t − τ )

1 + x10
j (t − τ )

− k
N∑

m=1,m �= j

[xm(t − τm) + x j] (2)

where j = 1, 2, . . . , N . For simplicity, we consider all the repul-
sive coupling delays are identical i.e. τ1 = τ2 = · · · = τN = τc . We 
choose the parameters as a = 0.1, b = 0.2, τ = 32.0 so that the 
individual node oscillates hyper chaotically in absence of coupling 
strength. The chaotic time series and attractor in (x(t) vs. x(t − τ )) 
plane are shown in Fig. 1(a). To understand the effect of delayed 
repulsive interaction we start with two coupled Mackey–Glass os-
cillators (N = 2) when the coupling interaction is completely in-
stantaneous i.e. τ1 = τ2 = 0.0. Such instantaneous interaction fails 
to suppress the oscillatory states of each unit rather generates anti-
synchronization after a critical value of coupling strength k. For 
k = 0.2, the time series of each (x1(t), x2(t)) is shown in Fig. 1(b) 
by blue and red color respectively. The anti-synchronization error 
x1(t) + x2(t) is also shown by black color which follows a zero line. 
The observed result concludes that non-delay repulsive interaction 
cannot stabilize the origin of two coupled Mackey–Glass chaotic 
units. But two repulsively coupled identical Mackey–Glass systems 
produce amplitude death in presence of coupling delay time (re-
sults are not shown).

Next, we consider N = 3, i.e. three identical Mackey–Glass oscil-
lators are coupled by instantaneous/non-delay (τ1 = τ2 = τ3 = τc ;
τc = 0.0) mean repulsive interaction. The individual Mackey–Glass 
system has one of the equilibrium point at origin. Extrema of the 
variable of one node has been plotted in Fig. 1(c) as a function 
of k and it is clear that amplitude death occurs after k ≥ 0.1 via 
inverse Hopf bifurcation and the fixed point (origin) remain sta-
ble for higher coupling strength. Next we check the delay effect 
in the repulsively coupled three Mackey–Glass nodes. Contrast to 
the previous result, when coupling delay τc = 7.0 is introduced 
in the coupling term, we observe (Fig. 1(d)) that amplitude death 
occurs in 0.1 ≤ k < 0.21 and surprisingly find that there is a criti-
cal value of coupling k = 0.21 above which the stable equilibrium 
point destabilizes and oscillatory state revives. This phenomenon 
emerges due to the presence of time delay τc in the repulsive 
mean coupling. Keeping fixed the coupling strength at k = 0.35
we have changed τc and find the bifurcation diagram of the vari-
able of one node and a transition from AD to oscillation occurs 
(Fig. 1(e)). The stability of origin changes if the complex eigen-
value λ of the characteristic equation crosses the imaginary axis 
λ = iβ and regaining of oscillation via Hopf bifurcation due to the 
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