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We propose a tight-binding model to investigate electronic transport properties of single helical protein 
molecules incorporating both the helical symmetry and the possibility of multiple charge transfer 
pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and 
helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations 
which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than 
its other biological counterparts e.g., single-stranded DNA.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Current days biomolecules are receiving huge attention from 
different scientific communities including physics, chemistry and 
others because of their possible applications in nanoelectronics
and the need of understanding electronic and spin transfer pro-
cesses in biological systems [1–4]. DNA is one of them which has 
attracted major attention from the beginning of the last decade 
[5–9]. Whereas other biomolecules such as proteins are less at-
tended in this respect. However with the recent progress in chiral-
induced spin selectivity (CISS) both DNA and protein are getting 
similar attraction [10–22] across various disciplines as they both 
have helical structures which can be used for efficient spin polar-
ization. In 2011 Göhler et al. [10] showed that double-stranded 
DNA (ds-DNA) can be used as a good spin filtering agent with 
length dependent spin polarization up to 60%. Whereas no spin 
polarization was achieved for single-stranded DNA (ss-DNA). These 
findings are then theoretically supported by Guo et al. [12]. But 
recent experiments suggest that α-helical proteins are also quite 
efficient in spin polarization process though it has single helical 
structure [21,22]. These results open up an opportunity to examine 
these single-helical structures from a new aspect, different mod-
els are also proposed to explain these experimental results [14]. 
In respect of electronic transport properties DNA is widely stud-
ied, though there are still controversies over different experimental 
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results [7–9,23–26]. Questions still remain on reproducibility of 
the experimental data and underlying charge transfer mechanism 
[27,29,28,30–33]. Whereas the same properties of different protein 
molecules are less examined. There are only a few reports available 
in the literature on electronic transfer process in proteins [34–38], 
but no such report is available on the effects of environment on its 
electronic transport properties. It is confirmed by CISS study and 
related theoretical work that there are multiple charge conduction 
pathways (MCCP) present in single-helical proteins due to which 
they are able to polarize the electron spin [14,21,22]. This possibil-
ity of MCCP makes helical protein molecules very good agents for 
long-range charge transport. As proteins have these MCCP, elec-
trons will face less disturbances/environmental effects during con-
duction and transport characteristics will be much rigid; reproduc-
tion of the experimental results will be much simpler with them.

In this paper we make an attempt to study the electronic trans-
port properties of single helical proteins incorporating both the 
helical symmetry and possibility of MCCP within tight-binding 
framework. We propose a model Hamiltonian to explore elec-
tronic transport through single-helical proteins and compare our 
results with another model proposed in Ref. [14]. We study differ-
ent transport properties from localization behavior to I–V response 
including the effects of environment that are modeled in terms of 
disordered on-site potential of the amino acids within the tight-
binding Hamiltonian. Our investigations show that due to presence 
of MCCP the effects of environment are much smaller which enable 
long range coherent charge transfer in these biomolecules. Inter-
play of helical symmetry and disorder also has non-trivial effects 
on localization and I–V responses of the protein molecules.
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Fig. 1. (Color online.) Schematic diagram of a single-helical protein molecule. Black 
dots on the helix represent the amino acids and dotted (black) lines between those 
black dots represent hopping (t′) between neighboring amino acids of adjacent 
pitches. The red line shows the single helix.

2. Theoretical formulation

The two-terminal electronic transport through single-helical 
protein molecule can be simulated using the following tight-
binding Hamiltonian for the entire system

Htot = H pro + Hleads + Htun , (1)

where H pro is the Hamiltonian for the protein molecule, Hleads rep-
resents the one dimensional semi-infinite leads on the both sides 
of the protein molecule and Htun is the tunneling Hamiltonian 
between protein molecule and the leads. The tight-binding Hamil-
tonian (Fig. 1) for the protein molecule is formed on the basis set 
spanned by the amino acids

H pro =
N∑

i=1

εc†
i ci +

N−1∑
i=1

tc†
i ci+1 +

N−n∑
i=1

t′c†
i ci+n + H.c. , (2)

where c†
i (ci ) is the creation (annihilation) operator for electrons at 

the ith Wannier state of the protein molecule with length N, t =
nearest neighbor hopping amplitude, ε = on-site potential energy
of the amino acids, t′ = hopping integral between two neighboring 
atomic sites in adjacent pitches which incorporates the possibil-
ity of MCCP along the helix. Here n is the number of amino acids 
within a given pitch, parameter that accounts for the helical sym-
metry. A dispersion relation for an infinite homogeneous chain of 
protein molecule can be obtained following the above Hamilto-
nian: E = ε + 2t cos(k) + 2t′ cos(nk) which explicitly depends on 
helical symmetry (n).

Apart from the above model, we also use another model fol-
lowing Ref. [14] to compare our results. The protein molecule is 
described in this model following the tight-binding Hamiltonian 
(later on we refer this as model:2 throughout the paper)

H pro =
N∑

i=1

εc†
i ci +

N−1∑
i=1

N−i∑
j=1

t jc
†
i ci+ j + H.c. , (3)

where c†
i , ci , ε and N have their usual meanings. t j = t1e−(l j−l1)/lc

is the jth neighboring hopping amplitude, where l j is the dis-
tance between two neighbors i and i + j, lc is the decay exponent 
and t1 is the nearest neighbor hopping integral. Here we have 

assumed that the electronic wave functions decay exponentially 
over distance. These assumptions are similar to the Slater–Koster 
scheme, and lc can be obtained by matching to first-principle cal-
culations [1,14].

In order to study the transport behavior of protein molecules, 
we use semi-infinite 1D chains as leads connected to the left (L) 
and right (R) ends of the protein molecule and the corresponding 
Hamiltonian can be expressed as

Hleads =
∑

i

(
εc†

i ci + tc†
i ci+1 + H.c.

)
, (4)

where i < 0 and i > N respectively represent left and right semi-
infinite 1D leads. The tunneling Hamiltonian between the leads 
and protein molecule is given by Htun = τ

(
c†

0c1 + c†
N cN+1 + H.c.

)

where τ is the tunneling matrix element between protein and the 
leads. In order to obtain transmission probability T (E) of elec-
tron through single-helical protein we use the Green’s function 
formalism [39]. The single particle retarded Green’s function for 
the entire system at an energy E is given by Gr = (E − H + iη)−1, 
where η → 0+ . The transmission probability of an electron with 
incident energy E is given by T (E) = Tr[�L Gr�R Ga] where Tr
represents trace over reduced Hilbert space spanned by the pro-
tein molecule. The retarded and the advanced Green’s functions 
in the reduced Hilbert space can be expressed as Gr = [Ga]† =
[E − H pro − �r

L − �r
R + iη]−1, where �r(a)

L(R) = H†
tunGr(a)

L(R)Htun is re-
tarded (advanced) self-energy of the left (right) lead and �L(R) =
i[�r

L(R) −�a
L(R)] is the level broadening due to coupling of the leads 

with the protein molecule, Gr(a)
L(R) being the retarded (advanced) 

Green’s function for the left (right) lead. It can easily be shown 
that �L(R) = −2 Im(�r

L(R)), where Im represents the imaginary 
part. At absolute zero temperature, using the Landauer formula, 
current through the protein molecule for an applied bias voltage 
V is given by I(V ) = 2e

h

∫ E F +eV/2
E F −eV/2 T (E)dE , where E F is the Fermi 

energy. We have assumed that voltage drop occurs only at the 
boundaries of the conductor.

3. Results

To perform numerical calculations we use following parame-
ter values for our proposed model throughout the entire work: 
ε = 0 eV, t = 1.0 eV and t′ = t/10 = 0.1 eV. We compare our 
results with model:2 using the following parameters: l1 = 4.1, 
l2 = 5.8, l3 = 5.1, l4 = 6.2, l5 = 8.9, l6 = 10.0 and lc is taken as 
0.9, all units are in Å. Using these values we can calculate the re-
lated hopping integrals (t j) which gives t2 ∼ 0.16t1 and so on. It 
is clear that gradually t j values will decrease (except t3 > t2) with 
increasing distance, therefore we restrict ourselves to t6 and set 
t1 = t = 1.0 eV. These parameter values for model:2 are extracted 
from Ref. [14]. For ss-DNA, to calculate its transport properties, we 
set t′ = 0 eV in our model which cancels any possibility of MCCP. 
We first study the localization properties of the system. The local-
ization length (l) of the system is calculated from the Lyapunov 
exponent (γ ) [40]

γ = 1/l = − lim
N→∞

1

2N
< ln(T (E)) > , (5)

where N = length of the system and <> denotes average over 
different disorder configurations. In actual experiments there are 
various environmental fluctuations that we have simulated in the 
model by considering the on-site energy of the amino acids (ε) 
to be randomly distributed within the range [ε − w/2, ε + w/2], 
where w represents the disorder strength.

In Fig. 2 we show the variation of Lyapunov exponent with 
disorder at different energies for both the protein molecule and 
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