
Physics Letters A 379 (2015) 3141–3145

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Low-energy quantum scattering induced by graphene ripples

Daqing Liu a,c,∗, Xin Ye a, Shuyue Chen a, Shengli Zhang c, Ning Ma b,c,∗∗
a School of Mathematics and Physics, Changzhou University, Changzhou, 213164, China
b Department of Physics, Taiyuan University of Technology, Taiyuan, 030024, China
c School of Science, Xi’an Jiaotong University, Xi’an, 710049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2015
Received in revised form 11 October 2015
Accepted 14 October 2015
Available online 19 October 2015
Communicated by R. Wu

Keywords:
Graphene ripple
Quantum scattering
Born approximation

We report a quantum study of the carrier scattering induced by graphene ripples. Crucial differences 
between the scattering induced by the ripple and ordinary scattering were found. In contrast to the 
latter, in which the Born approximation is valid for high-energy process, the former is valid for the low-
energy process with a quite broad energy range. Furthermore, in polar symmetry ripples, the scattering 
amplitude exhibits a pseudo-spin structure, an additional factor cos θ/2, which leads to an absence of 
backward scattering. We also elucidate that the scattering cross sections are proportional to the energy 
cubed of the incident carrier.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphene [1,2], which is a single atomic layer of carbon, is 
a two-dimensional crystal that can be embedded into a three-
dimensional space. In the past decade, its isolation has attracted a 
substantial amount of theoretical and experimental research, most 
of which stemmed from the peculiar behavior of graphene carriers. 
Many applications focus on the flat graphene, in which the move-
ment of carriers was represented by the Dirac Hamiltonian with 
massless fermion in 2 + 1 dimensional space–time [3–5].

Iorio et al. [6–10] studied the Weyl-gauge symmetry of
graphene Hamiltonian and its application to gravity research. Their 
results revealed that if one accepts the flat space–time description 
of conduct electron, one must also accept a curved space–time de-
scription because through a Weyl redefinition of the fields, actions 
are the same.

However, the Dirac description of graphene is only valid for low 
energies and small momentum around the Dirac points kal << 1, 
where al ∼ 10−10 m is the nearest carbon-to-carbon distance. In 
other words, the Dirac description of graphene is valid for car-
rier energies satisfying E = h̄v F k � El = h̄v F /al � 3 eV. Then, in 
the following, we restrict all the discussions in the constraints 
|E| � 3 eV around the Dirac points.
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It is well known that both experimental and theoretical studies 
have revealed that graphene is always corrugated and covered by 
ripples, which can be either intrinsic [11,12] or induced by rough-
ness of substrate [13,14]. Although graphene ripples complicate the 
system, they also extend their application because additional ad-
justable parameters are associated with the ripples [2,15].

For instance, incident carriers are scattered or deflected by the 
nonzero curvature induced by graphene ripples. However, in such 
process the quantum behaviors of the carriers should be consid-
ered. In fact, many questions remain, such as the role of the pseu-
dospin in the scattering process.

Katsnelson and Geim [16] have studied the influence on the 
electronic quality by the corrugation scattering effect using a frac-
tal dimension theory. They showed that when the corrugation 
graphene can be depicted by a fractal dimensional surface, i.e. the 
height-correlation function behaviors as < [(h[r] − h(0))2 >∝ r2H , 
the effective potential is a long-range one, such as Eq. (15) in 
Ref. [16]. However, when graphene ripples cannot be depicted by 
fractal dimension theory, the detailed study on the quantum scat-
tering induced by, for instance, isolated ripple, is needed.

In this manuscript we report a quantum study on the car-
rier scattering induced by graphene ripples. Surprisingly, our study 
showed a crucial difference between the scattering induced by the 
graphene ripple and ordinary scattering. In the latter, the Born 
approximation was valid in the high-energy process, whereas in 
the scattering by typical graphene ripples, the Born approxima-
tion showed an opposite validity but with a quite broad energy 
range provided the Dirac description of graphene is valid. We fur-
thermore showed that, in a polar symmetry ripple, the scattering 
process emerged an explicit pseudospin structure, in which an 
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additional factor cos θ/2 was exhibited in the expression of scatter-
ing amplitude, which leads to the absence of backward scattering. 
Compared to ordinary quantum scattering, the scattering cross sec-
tions were proportional to the energy cubed of the incident carrier. 
Furthermore, the Hamiltonian also showed that if the graphene 
was bent in only one direction, its properties did not change if 
there is no phase transition because suitable parameters could be 
rearranged.

2. Hamiltonian in the ripple graphene

In this study, we assume that the graphene is not consistently 
flat, that is, the curvature of graphene is not zero. To depict the 
curvature, we first formulate graphene metric.

A curve graphene can be considered a two-dimensional surface 
embedded in a three-dimensional space. The surface is defined by 
the function z(r), which is the height with respect to the z = 0
plane and r = (x, y) is the coordination in z = 0 plane, as shown 
in Eq. (1):

dz2 = z2
xdx2 + z2

ydy2 + 2zxzydxdy, (1)

where zx = ∂z
∂x , zy = ∂z

∂ y , zxy = ∂2 z
∂x∂ y etc.

The space–time metric is (in this study we set h̄ = v F ≡ 1)

gμν =
⎛
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⎠ , (2)

where the zeroth component on 2 + 1 dimensional space–time, t , 
does not mix with space components. Thus, in the following, the 
zeroth component is ignored if there is no confusion.

The fielbein fields ea·μ(x, y), which satisfy ea
μeb

νηab = gμν with 
the constant metric ηa,b = diag{−1, −1} is chosen as e1·2 = e2·1,
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This choice guarantees that when graphene is flat, fielbein matrices 
are consistently unitary transformations.

Because the affine connection are defined by �
μ
νλ =

1
2 gρμ(gρν,λ + gρλ,ν − gνλ,ρ), the affine connections are read as
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In flat space, the gamma matrices are

γ 1̇ =
(

0 1
−1 0

)
, γ 2̇ =

(
0 −i
−i 0

)
,

γ 0 = β =
(

1 0
0 −1

)
. (5)

Whereas in ripple graphene they are defined as γ μ = eμ
a γ a ,
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When the spin connection coefficient is defined as ωab
λ =

eaσ (eb·σ ,μ − �λ
μσ eb·λ), and the spin connection is defined as 
μ =

1
8 ωab

μ [γa, γb], we find
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The Hamiltonian is a very complex 2 × 2 matrix, as shown in 
Eq. (8),

H11 = H22 = 0,
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However, the complexity of the Hamiltonian should not be intim-
idating. If graphene is only bent in x-direction, that is, zy = zxy =
zyy = 0, the Hamiltonian becomes

H ′ =
⎛
⎜⎝

0 −∂y − i∂x√
1+z2

x

∂y − i∂x√
1+z2

x

0
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In the above expression, if we make a substitution x → x′ and 
y → y′ , where y′ = y and x′ = ∫ x

0

√
1 + z2

xdx, the Hamiltonian is 
the same as the one in flat graphene. The physics effect is a Fermi 
velocity renormalization in x-direction, v F → v F√

1+z2
x

.

Such bend leads to an effective potential. To illustrate this point 

we consider a bent graphene depicted by z(x) =
⎧⎨
⎩

0, I : x ≤ 0
cx, II : 0 < x < d
cd, III : x ≥ d

and normal incident conduction electrons (with energy k > 0) in 
the left side. In this case zx = c at region II and zx = 0 at regions I
and III. Wave functions in three regions are
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