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It has been suggested that in the neighborhood of a certain kind of defect in a crystal there is a bend 
in the electronic band. We confirm that this is indeed possible using the Kronig–Penney model. Our 
calculations also have implications for photonic crystals.

© 2016 Elsevier B.V. All rights reserved.

Band gaps occur for waves in any non-trivial periodic structure. 
Current interest, however, focuses on two particular manifesta-
tions: electrons and photons. The present work, although focused 
on electrons, does have material relevant to photonic crystals.

In Baran et al. [1] the authors deal with electron states in 
crystals and explain the luminescence spectra of β-Ca2SiO4:Eu2+, 
Eu3+. They have the interesting suggestion that in the neighbor-
hood of an impurity there is a bend in the conduction band; 
namely in that region there are fewer electron states and they are 
of higher energy.

There are other experimental observations that could be ex-
plained by considering local changes in the conduction or va-
lence bands. As an example, consider irregularities that have been 
seen in the low temperature dependence of scintillator delayed-
recombination signals. For many substances this signal is approx-
imately temperature independent. This phenomenon has been ex-
plained as due to quantum tunneling between a recombination 
center and a nearby trap, and has been seen in a number of scin-
tillating materials [2–6]. In particular, a constant low temperature 
delayed recombination signal was observed up to at least about 
150–200 K. However, there is at least one important case that does 
not fit this picture. The intense peak in the delayed recombination 
signal in Ce3+-doped Gd3Ga3Al2O12 (GGAG) [4] at around 100 K 
has so far not been satisfactorily explained. But if the conduction 
band does bend near the Ce3+ impurity things can change dra-
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matically. The Ce3+ ion and the nearby resonant trap could then 
have different energy separations from the conduction band and 
unlike the Ce3+ excited state, the trap can be very shallow. The 
temperature independent quantum tunneling between Ce3+ and 
the trap would be accompanied by the transfer of excitation en-
ergy from the shallow trap to Ce3+ via the conduction band at 
very low temperatures. The latter temperature dependent process 
would produce the observed bump in the delayed recombination 
signal.

We have explored this idea of the conduction band bending us-
ing the simplest of one-dimensional models, the Kronig–Penney 
model with δ-functions.

A great deal of work along these lines has already been done, 
since impurities play an important role in almost-periodic sys-
tems. Early literature that employs the Kronig–Penney model in-
cludes Stęślicka and Sengupta [7], Kasamanyan [8] and many oth-
ers. For photonic crystals, where the one-dimensional feature can 
be directly relevant, the Kronig–Penney model has also provided a 
framework; see Luna-Acosta et al. [9,10]. The emphasis in these 
works has been on the impurity state itself or on transmission 
properties. In many cases the techniques are similar [11], however, 
our primary concern is electronic states that respond to a single 
impurity. This seems close to the work of Baran et al. [1].

What we find is that a lone defect has a profound effect on the 
eigenstates, and besides shifting the location of the gap it can also 
change the nature of the eigenfunctions throughout the crystal. 
The Bloch theorem does not apply [12] and many familiar features 
show radical differences. We cannot be sure of the extent to which 
these properties persist in three dimensions, although [1] suggests 
its relevance.
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Without an impurity and in a simple form, the Kronig–Penney 
model has Hamiltonian

H0 = p2

2m
+ λ

N−1∑
n=0

δ(x − na) ,

where a is the lattice spacing, N the number of cells, m the mass, 
and λ the strength of the potential. Note that we immediately use 
a δ function potential, since for the matters of principle that we 
seek the details of the periodic potential should not matter. In 
keeping with this viewpoint we also set m = 1 and h̄ = 1. To make 
comparisons to physical systems we will derive our energy scale 
from typical values for crystal systems.

We shall generally take λ to be negative, mimicking the attrac-
tion experienced by electrons at atomic locations. And finally, for 
the electronic case we insist (as is usual in these models) that the 
state at x = Na differ from that at x = 0 only by a phase, that phase 
being Nka with k the wave vector entering the Bloch theorem.

With these assumptions, the wave function in cell n (such 
that na < x < (n + 1)a) can be taken to be ψn = AneiK (x−na) +
Bne−iK (x−na) with energy E = K 2/2. The condition at na imposed 
by the δ-function is �ψ ′ = 2λψ with �ψ ′ being the change in ψ ’s 
derivative. Note that the K appearing here is not the k of the Bloch 
theorem. It follows that

[
An

Bn

]
= M

[
An−1

Bn−1

]
, with M =

[
�(1 + z) �∗z

−�z �∗(1 − z)

]
,

z = λ/(2iK ), and � = eiKa (�∗ = e−iKa). The requirement that 
the eigenvalues of MN be of magnitude 1 fixes the allowable 
bands and the gaps. Letting φ = Ka, this condition is | cosφ +
(λ/2K ) sin φ| < 1. For bound states one can do an analytic contin-
uation and the spectral condition is 

∣∣cosh φ̄ − (|λ|/2K ) sinh φ̄
∣∣ < 1, 

where K and φ̄ are the analytic continuations, E = −K 2/2 and λ
is assumed negative. We will later use the numerical value of the 
top of the “valence band” (the bound states) and the bottom of 
the conduction band to relate our energy to the physical scales. 
The matrix M is known as the transfer matrix; it conserves cur-
rent (∝ K (|An|2 − |Bn|2)) and is an element of the group SU(1, 1) 
[13].

We assume that our impurity is at site L with 1 ≤ L ≤ N . We 
do not seek a value for the impurity level—as some of the arti-
cles cited earlier do. Rather we assume it is there and its associ-
ated defect provides a force—different from the usual—on nearby 
electrons. This is in keeping with the physical situation in [1], 
where the presence of Eu3+ (an impurity) causes an additional 
charge compensating defect to appear in the vicinity of the eu-
ropium to maintain the lattice charge neutrality. To keep things 
simple we assume that in cell-L, as a consequence, there is an 
additional positive, constant, repulsive potential throughout the 
interval La < x < (L + 1)a [14]. To provide a framework for so-
lution we further assume that this situation repeats, so that, as 
for the system without impurities, we require that the associated 
full transfer matrix (presented below) has eigenvalues of magni-
tude unity. (In this our method could be thought of as involving 
a supercell. For photons one calculates instead transmission prob-
ability.)

In cell L (i.e., La < x < (L + 1)a) the momentum is reduced 
and we have K ′ = √

K 2 − 2V , with V the value of the potential 
in that interval. As the wave function in that interval we take 
ψL = ALeiK ′(x−La)+ B Le−iK ′(x−La) (with analytic continuation if nec-
essary). There are now two transfer matrices, from L − 1 to L and 

Fig. 1. Absolute values of eigenvalues of Mall (|m|) are shown as red points (some of 
which are excluded because of a cutoff in the axes). In addition, when an eigenvalue 
does not have magnitude 1, a pair of black dots are displayed at 1 ± 0.02. Finally 
to better judge the effect of the impurity, the normal, i.e., V = 0, energy band is 
shown in green at a height of 1.04 (although these are magnitude unity eigenvalues 
of MN ) [15]. Parameter values: λ = −10, a = 1, V = 15, N = 20, L = 9. The energy, 
E , in this figure is roughly twice the actual energy in eV. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article. See also [15].)

from L to L + 1. These are designated MK→K ′ and MK ′→K , respec-
tively. A straightforward calculation gives

MK1→K2 =
⎡
⎢⎣

�1

(
K1+K2

2K2
+ z2

)
�∗

1

(
K2−K1

2K2
+ z2

)

�1

(
K2−K1

2K2
− z2

)
�∗

1

(
K1+K2

2K2
− z2

)
⎤
⎥⎦ ,

where z2 = λ
2iK2

, �1 = eiK1a , and K1 and K2 are either K and K ′
or the reverse. With the impurity at L the total transfer matrix for 
all L cells is Mall ≡ MN−L MK ′→K MK→K ′ ML−2.

To see whether the spectrum of Mall fulfills the expectations of 
[1] we display Fig. 1. The red dots, which are slightly larger than 
the others, are the eigenvalues of Mall; when they have magnitude 
one indefinite ring propagation is possible. Superimposed on this 
image are green dots at height 1.04, which are located at energy 
values for which magnitude 1 eigenvalues exist for V = 0. These 
would be the bands (and in their absence, the gaps) without the 
impurity. To make clear that many energy values within the non-
defect bands are also eliminated we have put a pair of black dots 
displaced by 0.02 from 1 for each eigenvalue of Mall that is not of 
magnitude 1 [15]. In principle this can also be seen from the red 
dots at small magnitude values [16]. A number of observations can 
be made from this image. First, many states that were formerly 
(V = 0) in the conduction band no longer appear there. Moreover, 
the first conduction band (5 � E � 10 in our units) has increased 
its energy, as suggested in [1]. That there is little or no increase 
for the next band is to be expected since the energies are larger 
and the potential may be expected to have less influence. And then 
there is what we do not see. No new states emerge in the gap, al-
though the impurity can increase transmission, a kind of resonance 
phenomenon in photonic crystals. (Confusion may arise since the 
red dot at the top of the first conduction band might be taken to 
be to the right of the green dot above it. But this is an artifact of 
the dot size, which is larger for the V 	= 0 band.) No points appear 
below about E = 4.5 because of issues of numerical accuracy [17]. 
Even for transmission data, the values of the small-K matrix Mall
are so large that a cutoff at 10−10 in the graph would lose these 
numbers as well.

It is interesting to focus on the first (left-most) E value in the 
conduction band. Although it is to the right of the beginning of 
the V = 0 band (confirming the “bend in the band”) even this is 
not the full story. For more information we turn to another graph, 
shown in Fig. 2. First note that when V = 0 the wave functions 
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