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The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm 
of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved 
manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates
differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns 
equation for calculation of geoid’s height with full account for relativistic effects beyond the Newtonian 
approximation. A brief discussion of the relativistic Bruns formula is provided.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge of the figure and size of the Earth is vitally impor-
tant in geophysics and in applied sciences for determining precise 
position of objects on Earth’s surface and in near space, depict-
ing correctly topographic maps, creating digital terrain models, and 
many others. Solution of this problem is challenging for the real 
figure of the Earth has an irregular shape which can be neither 
described by a simple analytic expression nor easily computed 
as mass distribution of the Earth is not known well enough [1]. 
To manage solution of this problem, C.F. Gauss proposed to take 
one of the equipotential surfaces of Earth’s gravitational field as 
a mathematical idealization approximating the real shape of the 
Earth such that it coincides with the mean sea level of idealized 
oceans representing the surface of homogeneous water masses 
at rest, subject only to the force of gravity and free from varia-
tions with time [2]. In 1873, a German mathematician J.B. Listing1

coined the term geoid to describe this mathematical surface and, 
since then, the geoid has become a subject of a considerable scien-
tific investigation in geodesy, oceanography, geophysics, and other 
Earth sciences [3]. Geoid’s equipotential surface is perpendicular 
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1 It is the same J.B. Listing who introduced in 1847 the term topology in mathe-
matics.

everywhere to the gravity force vector defining direction of the 
plumb line. In its own turn, the direction of plumb line is defined 
by the law of distribution of mass density inside Earth’s crust and 
mantle. For the mass distribution is basically uneven, the shape 
of geoid’s surface is not an ellipsoid of revolution with regularly 
varying curvature.

The Stokes–Poincaré theorem has played a major role in devel-
oping the theory of Earth’s figure: if a body of total mass M rotates 
with constant angular velocity � about a fixed axis, and if S is a 
level surface of its gravity field enclosing the entire mass, then the 
gravity potential in the exterior space of S is uniquely determined2

by M , �, and the parameters defining S [2]. However, geodesy is 
more interested in the inverse problem of the theory of Earth’s fig-
ure which is to determine the shape of geoid from observed values 
of gravitational field.

Geoid’s precise calculation is usually carried out by combining 
a global geopotential model of gravitational field with terrestrial 
gravity anomalies measured in the region of interest and sup-
plemented with the local/regional topographic information. The 
gravity anomalies (along with other modern methods [2]) allow 
us to find out the undulation of geoid’s surface that is mea-
sured with respect to a reference level surface of the World 
Geodetic System [4] established in 1984 (WGS84), and last re-
vised in 2004. This reference surface is called a reference ellip-

2 In classic geodesy Earth’s angular velocity is denoted ω. However, this symbol 
is commonly used in general relativity to denote vorticity, and we employ it later 
on in relativistic equations.
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soid. Geoid’s undulation is given in terms of height above the 
ellipsoid taken along the normal line to ellipsoid’s surface (see 
http://earth-info.nga.mil/GandG/wgs84/ for more detail).

A reference level surface, S̄ , is defined by the condition of 
constant gravity potential, ŪN, generated by a perfect fluid being 
rigidly rotated with respect to celestial reference frame [5] with a 
constant angular velocity �,

ŪN(r, θ) ≡ V̄ (r, θ) + 1

2
�2r2 sin2 θ , (1)

where xi = {x1, x2, x3} = {r, θ, λ} are spherical coordinates: r – 
radius-vector, θ – the polar angle (co-latitude) measured from the 
rotational axis, and λ – the longitude measured in the equato-
rial plane. Eq. (1) also defines the surfaces of constant density and 
pressure of the fluid [2].

The quantity V̄ = V̄ (r, θ) in (1) is the axisymmetric gravita-
tional potential determined inside the mass distribution by the 
Poisson equation,

�N V̄ (r, θ) = −4πGρ̄ , (2)

where ρ̄ = ρ̄(r, θ) is the axisymmetric volume mass density, G is 
the Newtonian gravitational constant,

�N ≡ ∂rr + 2

r
∂r + 1

r2
∂θθ + 1

r2 tan θ
∂θ + 1

r2 sin2 θ
∂λλ , (3)

is the Laplace operator in spherical coordinates, and the partial 
derivatives ∂i ≡ ∂/∂xi , ∂i j ≡ ∂2/∂xi∂x j (the Roman indices take val-
ues 1, 2, 3). Inside masses a differential equation defining gravity 
potential, ŪN, is

�NŪN = −4πGρ̄ + 2�2 , (4)

and is mostly used in geophysics.
Physical geodesy uses the Laplace equation

�N V̄ (r, θ) = 0 , (5)

instead of (2) as the gravitational field is only required outside 
masses for all relevant applications. Laplace’s equation (5) is fully 
sufficient to determine the gravitational potential V in the exte-
rior space, where the density distribution has not to be known. 
Nonetheless, it is worth emphasizing that solution of the Laplace 
equation (5) is not fully arbitrary but must match with a solution 
of the Poisson equation (2) with physically meaningful mass den-
sity distribution inside Earth’s body.

Because all functions depend only on r and θ , the reference 
surface is an axisymmetric body. In the most general case, Eq. (1)
does not define a surface of the ellipsoid of revolution. Only in 
case of a uniform mass density, ρ̄ = const., the reference level sur-
face coincides with the ellipsoid of revolution [6, Section 5.2]. The 
homogeneous ellipsoid of revolution is very convenient as a refer-
ence surface because its external (called normal) gravity field can 
be modeled by closed formulas. In principle, it is possible to con-
struct level spheroids that provide a better fit to the geoid but 
their equations are more complicated mathematically and do not 
significantly reduce deviation of geoid from ellipsoid. Hence, they 
are less suitable as physical normal figures [2, Section 4.2.1].

When applying general relativity to calculation of geoid’s sur-
face, it becomes important to realize that the post-Newtonian 
reference level surface cannot be the ellipsoid of revolution any 
longer. The reason is that a figure of reference in geodesy is to be 
a solution of the Newtonian gravity field equation (4). The same 
principle must be hold in general relativity. It requires to find out 
an exact interior solution of the Einstein gravity field equations 
that would be consistent with the solution representing the ho-
mogeneous ellipsoid of revolution in classic geodesy. This general-
relativistic problem is not trivial from mathematical point of view, 

because of non-linearity of Einstein’s equations, and has not yet 
been solved. Calculations conducted in the post-Newtonian ap-
proximations reveal that the uniformly rotating perfect fluid with 
homogeneous density is not an ellipsoid but represents an ax-
isymmetric surface of a higher polynomial order [7–10] but the 
convergence of the post-Newtonian series has not yet been ex-
plored. In this situation, the only restriction which we impose in 
the present paper on the shape of the reference level surface is 
that it is consistent with the Einstein equations.

Earth’s crust is a thin surface layer having irregular mass den-
sity that deviates significantly from the axisymmetric distribution. 
Furthermore, the Earth mantle shows a non-axisymmetric surface 
deformation which easily reaches the same dimension as the crust 
variation, and its density is much bigger than the density of the 
crust. Because of these irregularities in both crust and mantle, the 
physical surface, S , of the geoid is perturbed and deviates from the 
equipotential surface S̄ of the unperturbed (axisymmetric) figure 
defined by (1). We introduce the overall mass density perturbation 
of both the mantle and the crust by equation

μ(r, θ, λ) ≡ ρ(r, θ, λ) − ρ̄(r, θ) , (6)

where ρ(r, θ, λ) is the actual density of Earth’s matter. We denote 
the actual gravity potential of Earth by

WN(r, θ, λ) ≡ V (r, θ, λ) + 1

2
�2r2 sin2 θ , (7)

where V = V (r, θ, λ) is a gravitational potential that is determined 
by the Poisson equation

�N V (r, θ, λ) = −4πGρ(r, θ, λ) , (8)

inside masses, and the Laplace equation

�N V (r, θ, λ) = 0 , (9)

outside masses.
We call the difference

TN(r, θ, λ) ≡ WN(r, θ, λ) − ŪN(r, θ) , (10)

the disturbing (Newtonian) potential where both functionals, WN
and ŪN, are calculated at the same point of space under as-
sumption that the angular velocity � remains unperturbed. It is 
straightforward to see that the disturbing potential obeys to

�NTN(r, θ, λ) = −4πGμ(r, θ, λ) , (11)

inside mass distribution, and to the Laplace equation

�NTN(r, θ, λ) = 0 , (12)

outside masses.
Molodensky [11,12] reformulated (12) into an integral equation

2π TN +
‹




TN

�
ni∂i ln (�TN)d
 = 0 , (13)

where � = |x − x′| denotes the distance between the source point, 
x′ , taken on Earth’s surface 
 and the field point, x, while d
 is 
the surface element of integration at point x′ , and ni is the (out-
ward) unit normal to 
 at x′ . The physical surface 
 of the Earth 
is known from the Global Navigation Satellite System (GNSS) mea-
surements [1]. Thus, the only remaining unknown in (13) is the 
disturbing potential, TN. It can be found from (13) by employing 
the gravity disturbances of TN(
) taken on 
 as boundary values 
[13]. As soon as TN is known everywhere in space, the geoid’s un-
dulation (its height N above the reference ellipsoid) can be found 
from Bruns’ equation [1]
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