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H I G H L I G H T S

� “Multiple Detector Influence Method” developed for uncertainty reduction.
� Absolute particle counting in absence of known detector efficiency.
� Detector set efficiency determination.
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a b s t r a c t

The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the
absence of known detector efficiency and without the need to register coincidences of any kind.

This method exploits the influence of the presence of one detector in the count rate of another de-
tector, when they are placed one behind the other and define statistical estimators for the absolute
number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical
description was recently published (Rios and Mayer, 2015b) and its practical implementation in the
measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in
(Rios and Mayer, 2016).

With the objective of further reducing the measurement uncertainties, in this article we extend the
method for the case of multiple detectors placed one behind the other. The new estimators for the
number of particles and the detection efficiency are herein derived.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The present work is motivated in the certain possibility of
further reducing the statistical uncertainty with which a particle
flux is measured through the previously introduced “Influence
Method” (Rios and Mayer, 2015a, 2015b). Within the previous
scheme, two detectors of similar but unknown efficiency were
employed. The extension to different efficiencies and of particle
out-scattering in the detector, were also treated in the original
publication. Now we will extend the method to the case of a
number of detectors involved in the measurement, greater than
the original two. To develop the new scheme it is convenient to
start with a brief description of the results previously obtained.

The "Influence Method" was initially conceived using two de-
tectors with equal efficiency placed one after the other and con-
sidering the number of particles (n) falling upon the detector
during the counting time (Δt) to be a constant (n¼constant.) .This

is the case where you want to measure a single event that gen-
erates no particles, such as a single burst of a Plasma Focus, a pulse
of a Z-pinch experiment, an experiment of inertial confinent fusion
(ICF), etc.

Let, in the simplest case, two detectors with the same efficiency
ε, be placed one behind the other at a certain distance from the
radiation source as schematized in Fig. 1. The number of particles
counted by detector X is an aleatory variable (X) whose distribu-
tion is a binomial of parameters n and ε ( ε~ ( )X Bi n, ). In the pro-
posed scheme, particles not detected at X ( = −X n Xout ) impinge on
detector Y. Thus, the number of those particles detected by Y are
an aleatory variable (Y) whose distribution is also a binomial of
parameters n and ε ε ε·( − ) = ·q1 (Y ε~ ( )Bi n q, ), where ε=( − )q 1
represents the probability of not being detected by X.

This scheme can be interpreted as a method where the sample
of the second variable is influenced by the first one, for which
reason we call it the “Influence Method”. This influence manifests
itself through the correlation between X and Y. Within this scheme
we define an estimator for the population and an estimator for the
efficiency as,.
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As the estimators are non linear functions of two correlated
variables, the calculation of uncertainties requires a certain alge-
braic effort which was developed in detail in (Rios and Mayer,
2015b), arriving at the expressions for the estimators with their
uncertainties for a set of measurements (x,y) as follows:
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The condition for the valid application of the method is:

ε ε ε≫ + ( ·( − ))n 2/ 5/ 13

In the same reference, the treatment can be found for cases of
detectors with different efficiencies and when some particles are
removed from the beam by scattering in the detector.

The extension of the method for its application to a radioactive
source, which adds its natural statistical emission fluctuations, was
published in (Rios and Mayer, 2016). In this case, the number of
particles falling on the forward detector (detector X), is re-
presented by an aleatory variable (Z) Poisson distributed with
parameter λ¼n ( ~ ( )Z Poi n ). Here n is the expected value of Z, the
amount of particles incident upon the detector, so they relate to
the number of source particles in the same time interval (no)
through the geometrical efficiency (εg) through ( ε= ·n no g). Thus,
detector X obeys a binomial distribution of parameters Z and ε
( ε~ ( )X Bi Z, ), being ε the intrinsic efficiency of that detector. In (Rios
and Mayer, 2016) it is demonstrated that under these conditions X
is also Poisson distributed ( ε~ ( · )X Poi n ) and that under these
conditions, Y is also Poisson distributed ( ε~ ( · · )Y Poi n q ). Since the
variables are Poisson distributed, the expected values are the same
as when the variables only obeyed binomial distributions, but the
variances do change.

The effect of background (B) was also considered, yielding ex-
pressions with the corresponding uncertainties:
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In this new work we present the “Multiple Detector Influence
Method”. It deals with the case where more than two detectors are
placed successively one behind the other, with the aim to reduce
overall statistical uncertainty, in case it can be implemented in
practice. Estimators for the number of original particles and for the
efficiency are deduced, along with the condition for the valid ap-
plication of the method. We explicitly show how the uncertainty is
reduced when the number of detectors is incremented, if the new
condition of applicability is satisfied. Employment of this new
development is useful when detectors of low efficiency are

involved.
Section 2 deals with the case when the number of particles

incident on the first detector is a constant (n¼constant), applic-
able to an only burst of a pulsed source (Plasma Focus, Z-Pinch, ICF,
etc) or, possibly in some case, to each time bin in a time-of-flight
experiment.

Section 3 develops the results for the case of a radioactive
source, a case where the particles incident on the first detector are
therefore Poisson distributed.

The equations obtained are contrasted with Monte Carlo si-
mulations to show their concordance.

2. Multiple detector Influence Method for n¼constant

2.1. Estimator of the number of particles (n)

In this section we will deal with the case where the radiation
particles falling upon the detector system are a constant number,
as for instance one only radiation burst. This leaves out the Poisson
distributed radiation sources.

Let us suppose that a number k of detectors possessing equal
efficiency, are placed at a given distance from the source, one
behind the other as depicted in Fig. 2. Under these conditions it
was already demonstrated (Rios and Mayer, 2015a) that ε~ ( )X Bi n,1 ,

~ ( )X Bi n q,out1 , ε~ ( )X Bi n q,2 . Then, employing the same demonstra-
tion procedure as in (Rios and Mayer, 2015a, 2015b) it is easy to
find the distribution corresponding to the rest of the variables
shown in Table 1, where also, the expected values and variances of
each variable are shown.

As it can be seen in the mentioned Fig. (2), ( )Xout j is what de-
tector j did not detect. As a consequence, for any j, the incident
particles (n) can be written as:

= + + +…+ + ( )( )n X X X X X 1j out j1 2 3

As a consequence, when k detectors are placed as above de-
scribed, the number n can be estimated as the summation of all
the measured numbers except the last two (k-1 and k) and with
the last two evaluate what was not detected by detector k-2 by
means of the application of the Influence Method.

^ = + + +…+ + ^
( )( − ) ( − )n X X X X X 2k out k1 2 3 2 2

It must be noted that what was not detected by k-2 ( ( − )Xout k 2 ), is
precisely what impinged on detector (k-1).

Then, with k successive detectors, the estimator for the number
of particles is defined as:

^ = + ^
( )( − )n S X 3out k 2

Where the aleatory variable S is the summation of what was
detected by all the detectors, except the last two,.
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Strictly for k42 and S¼0 for k¼2.
Utilizing the Influence Method, what was not detected by de-

tector k-2 can be estimated as:
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To simplify the notation, we shall call : = ( − )X Xo out k 2 ,
= ( − )X X k 1 , =Y Xk , so in this way:

Fig. 1. Original measurement array scheme proposed by the “Influence Method”.
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