

Contents lists available at ScienceDirect

Radiation Measurements

journal homepage: www.elsevier.com/locate/radmeas

Growth and radioluminescence of metal elements doped LiCaAlF₆ single crystals for neutron scintillator

Chieko Tanaka ^{a, *}, Yuui Yokota ^b, Shunsuke Kurosawa ^b, Akihiro Yamaji ^a, Vitezslav Jary ^c, Vladimir Babin ^c, Jan Pejchal ^c, Yuji Ohashi ^a, Kei Kamada ^{b, d}, Martin Nikl ^c, Akira Yoshikawa ^{a, b, d}

- ^a Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- ^b New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10, Aramaki, Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- ^c Institute of Physics AS CR, 10 Cukrovarnicka, Prague 6, 16200 Czech Republic
- ^d C&A Corporation, 6-6-40, Aramaki, Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan

HIGHLIGHTS

- Pb²⁺ doped LiCAF single crystals were grown by micro-pulling-down method.
- We measured powder XRD and transmittance of grown crystals.
- We revealed radioluminescence emission spectra under X-ray irradiation.

ARTICLE INFO

Article history:
Received 25 October 2015
Received in revised form
5 February 2016
Accepted 8 February 2016
Available online 10 February 2016

Keywords: Neutron scintillator LiCaAlF₆ Pb²⁺ Single crystal

ABSTRACT

The ns^2 -type metal elements (Pb and Sn) doped LiCaAlF $_6$ single crystals were grown by a micro-pulling-down (μ -PD) method. Pb doped LiCaAlF $_6$ [Pb:LiCAF] crystals showed high transparency and single phase of the LiCAF structure. However, we could not obtain Sn:LiCAF crystals due to the evaporation of SnF $_2$ during the crystal growth. There was an absorption peak around 193 nm in the transmittance spectrum of Pb:LiCAF crystal. In the radioluminescence spectrum of the Pb:LiCAF crystal under X-ray irradiation, two emission peaks around 200 and 830 nm were observed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Neutron detectors using neutron scintillators have been investigated for some applications of the homeland security devices. 3 He gas proportional counter has been used widely as a basic sensor for the thermal neutron detection due to the high capture cross-section to the thermal neutron and the low sensitivity to γ -ray. However, the importance of alternative neutron scintillators has increased due to the supply crisis of 3 He gas by the excessive demand. Therefore, the neutron scintillator has become gradually of interest as an alternative material of 3 He gas. In the material

research of novel neutron scintillators, we have developed a LiCaAlF $_6$ [LiCAF] scintillator crystal including 6 Li with the high capture cross-section to the thermal neutron. In addition, the effective atomic number and density of the LiCAF are relatively low which results in small detection efficiency for γ -ray. The large bulk single crystal of the LiCAF can be grown by the melt-growth technique and it is non-hygroscopic.

Eu²⁺ doped LiCAF [Eu:LiCAF] and Ce³⁺ doped LiCAF [Ce:LiCAF] single crystals have been developed and their scintillation properties were investigated in the previous reports (Yoshikawa et al., 2009; Yanagida et al., 2009; Yokota et al., 2011; Yanagida et al., 2011). Especially, Eu:LiCAF has the high light yield (~30,000 photons/neutron), and Ce:LiCAF showed an emission with short decay time (~40 ns). However, the Eu and Ce dopant ions are rare-earth elements and there is a possibility of their supply crisis as it

^{*} Corresponding author.

E-mail address: chieko@imr.tohoku.ac.jp (C. Tanaka).

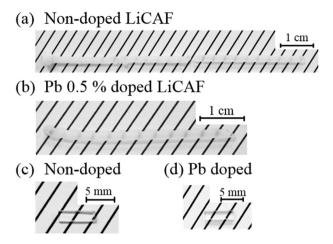


Fig. 1. (a) As-grown non-doped LiCAF and (b) Pb:LiCAF crystals grown by the μ -PD method. (c) Polished non-doped LiCAF and (d) Pb:LiCAF specimens.

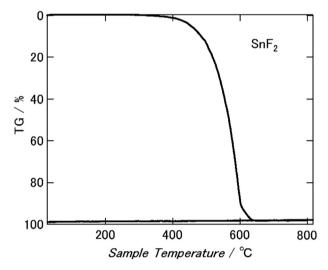


Fig. 2. Thermogravimetric analysis of SnF₂ powder.

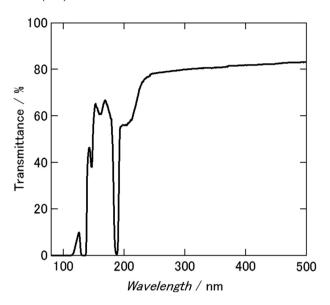


Fig. 4. Transmittance spectra of the polished Pb:LiCAF specimens.

happened in last decade.

The ns²-type cations, Sn²+ and Pb²+, are expected to show luminescence originated from s²-sp transition. In previous reports (Wang and Gan, 2014; Donker et al., 1988, 2006), Sn²+ in various host materials as 46P₂O₅–38Li₂O–16ZnO glasses, CaO and CaCO exhibits broad emission around 400 nm. However, there is no report about the luminescence of Sn²+ in a fluoride host material. On the other hand, there is a report about Pb doped LiCAF crystal and an emission peak around 209 nm was observed (Novoselov et al., 2007; Pejchal et al., 2009). However, there is no research about the luminescence in the longer wavelength region.

On these backgrounds, we grew ns²-type metal elements doped LiCAF crystals and investigated their properties to obtain a novel dopant candidate for the LiCAF crystal.

2. Experimental procedure

Non-doped and ns^2 ion doped LiCaAlF₆ single crystals were grown by a micro-pulling-down (μ -PD) method with a high-vacuum chamber for fluorides. Starting materials, LiF (4N), CaF₂ (4N), AlF₃ (4N), SnF₂ (3N) and PbF₂ (3N) powders, were mixed as

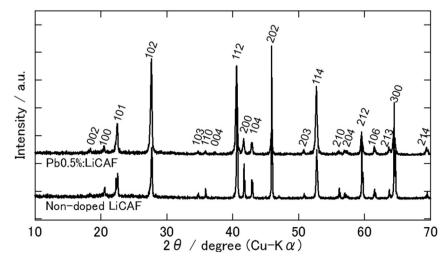


Fig. 3. Powder XRD patterns of the grown non-doped LiCAF, and Pb:LiCAF crystals.

Download English Version:

https://daneshyari.com/en/article/1888035

Download Persian Version:

https://daneshyari.com/article/1888035

<u>Daneshyari.com</u>