
Chaos, Solitons and Fractals 82 (2016) 34–37

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

On some combinations of terms of a recurrence sequence

Pavel Trojovský∗

Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 50003, Czech Republic

a r t i c l e i n f o

Article history:

Received 3 September 2015

Accepted 30 October 2015

Available online 21 November 2015

MSC:

11Dxx

Keywords:

Combinations

Recurrence sequence

a b s t r a c t

Let (Gm)m ≥ 0 be an integer linear recurrence sequence (under some weak technical conditions)

and let x ≥ 1 be an integer. In this paper, we are interested in the problem of finding combi-

nations of the form xGn + Gn−1 which belongs to (Gm)m ≥ 0 for infinitely many positive integers

n. In this case, we shall make explicit an upper bound for x which only depends on the roots

of the characteristic polynomial of this recurrence. As application, we shall study the k-nacci

case.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A sequence (Gn)n ≥ 0 is a linear recurrence sequence with

coefficients c0, c1,…,ck−1, with c0 �= 0, if

Gn+k = ck−1Gn+k−1 + · · · + c1Gn+1 + c0Gn, (1)

for all positive integer n. A recurrence sequence is therefore

completely determined by the initial values G0, . . . , Gk−1, and

by the coefficients c0, c1, . . . , ck−1. The integer k is called the

order of the linear recurrence. The characteristic polynomial of

the sequence (Gn)n ≥ 0 is given by

ψ(x) = xk − ck−1xk−1 − · · · − c1x − c0.

It is well-known that for all n

Gn = g1(n)αn
1 + · · · + g�(n)αn

� , (2)

where αj is a root of ψ(x) and gj(x) is a polynomial over a cer-

tain number field, for j = 1, . . . , �. In this paper, we consider

only integer recurrence sequences, i.e., recurrence sequences

whose coefficients and initial values are integers. Hence, gj(n)

is an algebraic number, for all j = 1, . . . , �, and n ∈ Z.

Possibly, the most known recurrence sequence is the

Fibonacci sequence (Fn)n ≥ 0 defined by the recurrence
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Fn+1 = Fn + Fn−1 (n ≥ 1) with initial values F0 = 0 and F1 = 1.

Its companion sequence is the sequence of Lucas numbers

(Ln)n ≥ 0 which are defined by the same recurrence but with

initial values L0 = 2 and L1 = 1.

The Fibonacci numbers are known for their amazing

properties (see [7] for the history, properties, and rich appli-

cations of the Fibonacci sequence and some of its variants).

Among the several pretty algebraic identities involving these

numbers, we are interested in the following one

xFn + Fn−1 = Fn+x, n ≥ 1 and x ∈ {1, 2}. (3)

In particular, this naive identity (which is completely easy

to prove) tell us, in particular (case x = 2), that the double of

a Fibonacci number added by its preceding term is always a

Fibonacci number. So, natural questions arise: Does the same

property hold for 3Fn + Fn−1? And for 4Fn + Fn−1? And so on?

This paper will be motivated by these questions.

Thus, the aim of this work is to combine some Diophan-

tine tools (asymptotic estimates and Galois theory) in order

to study the possibilities of existence of such identities in the

case of a general linear recurrence. In particular, we show

that it is possible to obtain an upper bound for x in the case

when xGn + Gn−1 belongs to the sequence (Gm)m ≥ 0 for in-

finitely many integers m. This upper bound is effective and

can be make explicit by means of the recurrence sequence.

More precisely, our main result is the following.
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Theorem 1. Let (Gn)n ≥ 0 be an integer linear recurrence (of or-

der at least 2) such that its characteristic polynomial ψ(x) has a

simple positive root being the unique zero outside the unit circle.

If x ≥ 1 is an integer such that xGn + Gn−1 belongs to (Gn)n ≥ 0

for infinitely many integers n, then

x ≤ 2

max
ψ(z)=0,|z|≤1

|z| . (4)

Let us give a brief overview of our strategy for prov-

ing Theorem 1. First, by supposing that xGn + Gn−1 = Ga(n),

we prove that a(n) = n + a, for some integer a (this is done

by using lower and upper bounds for Gn). After, we use an

asymptotic formula for Gn+t/Gn (when t ∈ {−1, a}) to obtain

the equation αx + 1 = αa+1, where α is the dominant root of

the sequence (Gm)m ≥ 0. Since α > 1, the right-hand side of the

previous identity can be very large. However, by conjugat-

ing by some convenient automorphism of the Galois group

of the characteristic polynomial of the recurrence, we get

|βx + 1| = |β|a+1 < 1 (since we are supposing that the alge-

braic conjugates of α are inside the unit circle). In conclusion,

we obtain an upper bound for x depending on β .

Before stating an application of our previous result, we

need some definitions.

Let k ≥ 2 and denote F (k) := (F
(k)

n )n≥−(k−2), the k-

generalized Fibonacci sequence whose terms satisfy the recur-

rence relation

F (k)
n+k

= F (k)
n+k−1

+ F (k)
n+k−2

+ · · · + F (k)
n , (5)

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that

the first nonzero term is F
(k)

1
= 1.

The above sequence is one among the several generaliza-

tions of Fibonacci numbers. Such a sequence is also called

k-step Fibonacci sequence, the Fibonacci k-sequence, or k-nacci

sequence. Clearly for k = 2, we obtain the classical Fibonacci

numbers, for k = 3, the Tribonacci numbers, for k = 4, the

Tetranacci numbers, etc.

Recently, these sequences have been the main subject of

many papers. We refer to [3] for results on the largest prime

factor of F
(k)

n and we refer to [1] for the solution of the prob-

lem of finding powers of two belonging to these sequences.

In 2013, two conjectures concerning these numbers were

proved. The first one, proved by Bravo and Luca [4] is re-

lated to repdigits (i.e., numbers with only one distinct digit

in its decimal expansion) among k-nacci numbers (proposed

by Marques [9]) and the second one, a conjecture (proposed

by Noe and Post [10]) about coincidences between terms of

these sequences, proved independently by Bravo–Luca [2]

and Marques [8].

As application of our Theorem 1, we shall solve com-

pletely the case when G = F (k). More precisely, we proved

that

Theorem 2. The only pairs (x, k) ∈ Z≥1 × Z≥2 such that

xF (k)
n + F (k)

n−1
∈

(
F (k)

m

)
m≥0

(6)

for infinitely many positive integers n are (x, k) = (1, 2) and

(2, 2).

We remark the existence of the interesting identities of

the form

F (k)
n−k+1

+ x
(
F (k)

n−k+2
+ · · · + F (k)

n

)
= F (k)

n+k
(7)

for all n ≥ 1, k ≥ 2 and x ∈ {1, 2}. This also can be deduce from

the previous theorems.

We point out that the main novelty of our results is that

it is very general and, in fact, it predicts when it is possible

to obtain identities of the form xGn + Gn−1 = Gm for a very

large class of recurrence sequences. Also, our method and our

results can be interesting for other authors which work on

these kinds of recurrences.

2. General recurrence sequences

2.1. Auxiliary results

In this section, we recall some results that will be very

useful for the proof of the above theorems. Let ψ(x) be the

characteristic polynomial of a linear recurrence (Gn)n ≥ 0. One

can factor ψ(x) over the set of complex numbers as

ψ(x) = (x − α1)
m1(x − α2)

m2 · · · (x − αt)
mt , (8)

where α1, . . . , αt are distinct non-zero complex numbers

(called the roots of the recurrence) and m1, . . . , mt are pos-

itive integers. A fundamental result in the theory of re-

currence sequences asserts that there exist uniquely de-

termined non-zero polynomials g1, . . . , g� ∈ Q({α j}t
j=1

)[x],

with deg g j ≤ m j − 1, for j = 1, . . . , t, such that

Gn = g1(n)αn
1 + · · · + gt(n)αn

t , for all n. (9)

For more details, see [11, Theorem C.1]. A root αj of the re-

currence is called a dominant root if |αj| > |αi|, for all j �= i ∈
{1, . . . , t}. The corresponding polynomial gj(n) is named the

dominant polynomial of the recurrence.

In the case of the Fibonacci sequence, the above formula

is known as Binet’s formula:

Fn = αn − βn

α − β
, (10)

where α = (1 + √
5)/2 (the golden number) and β = (1 −√

5)/2 = −1/α.

Now, we shall prove some lemmas which will be essential

ingredients in what follows. Throughout the paper, α1 will

denote the dominant root of (Gn)n ≥ 0.

Lemma 1. Let a be any integer and let (Gn)n ≥ 0 be any

linear integer sequence satisfying the hypotheses of the

Theorem 1. Then

lim
n→∞

Gn+a

Gn
= αa

1. (11)

Proof. Since α1 is simple root, we have immediately m1 =
1 and then the degree of dominant polynomial is at most

m1 − 1 = 0, so it is a constant, say g1.

Now, we use the formula in (9) to obtain

lim
n→∞

Gn+a

Gn
= lim

n→∞
g1α

n+a
1

+ g2(n + a)αn+a
2

+ · · · + gt(n + a)αn+a
t

g1αn
1

+ g2(n)αn
2

+ · · · + gt(n)αn
t

= lim
n→∞

αa
1 + g2(n+a)

g1αn
1

αn+a
2

+ · · · + gt (n+a)
g1αn

1
αn+a

t

1 + g2(n)
g1αn

1
αn

2
+ · · · + gt (n)

g1αn
1
αn

t

= αa
1,
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