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a b s t r a c t

Link prediction is important for inferring interactions among members in incomplete net-

works. For a given snapshot of network by sparse sampling, most link prediction methods

only consider one scale information, like global or local information, and it is hard to combine

them together. A probabilistic model is established to give a theoretical guarantee of the infor-

mation combinations. Meanwhile a bi-scale method is proposed to combine the information

of microscale (neighbors) and mesoscale (communities) in the observed networks. Experi-

ments on several social networks demonstrate that the approach always outperforms local

information based methods, and it is faster than the global methods with competitive results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As a fundamental problem in the network research works,

link prediction attempts to estimate the likelihood of links

between nodes, based on the observed links and the property

of nodes. A large number of link prediction methods have al-

ready been proposed in recent years. Many of them assume

that two nodes are more likely to be connected if they are

similar. The similarities of nodes can be measured by the dif-

ferent scales information in networks [1].

Considering the globle information(macroscale informa-

tion), the Katz method uses the ensemble of all paths [2] of

the network topology. And Hierarchical random graph(HRG)

[3] is based on maximum likelihood estimation of the

macroscale structure–latent hierarchical tree in network. Al-

though those global similarity approaches make good per-

formance, they carry high computational complexity. Con-

sidering local information (microscale information), a class

of predicting methods are proposed based on the idea that

two nodes are more likely to form a link if they share more
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neighbors [5], such as Common Neighbors(CN) [6], Resource

Allocation(RA) [17], and Adamic-Adar. If the observed data

are sampled sufficiently, those methods are fast and effective

for predicting links in social networks [6]. Mesoscale infor-

mation such as clusterings and communities is a significant

feature of the networks. Methods based on clusterings like

Stochastic Block Model(BM) [4] and approaches which draw

attention to community structure [7,8] can improve the pre-

diction accuracy in a certain range.

Link prediction essentially can be regarded as a comple-

tion of adjacency matrix of the network. Low rank approx-

imation is a type of such techniques that generates some

of the structures in the adjacent matrix of network with a

highly simplified representation. Prediction based on the re-

constructed matrix instead of the original one can get better

results [9]. Dealing with large networks, Cluster Low Rank

Approximation(CLRA) [10,11] using the clusterings of nodes

can give a quick low rank approximation. Combining CLRA

and hierarchical clustering, a multi-scale predicting method

is proposed to handle massive networks in the low rank ma-

trix [12]. However, it is hard for low rank approximation

to reveal the local structure when the network structure is

complex. Chen and Zhang [13] treats the link prediction as

a problem of matrix denoising, and propose a marginalized

denoising model. In our recent paper, we propose a convex
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nonnegative matrix factorization method, however, it only

consider the information of clusterings [14].

Methods mentioned above based on single scale infor-

mation are efficient, but still have limitations. For example,

if the observed network is sparse, the number of common

neighbors for arbitrary pairs of nodes tends to be zero. So it

is hard to find the missing links by those approaches. Pre-

diction using communities or mesoscale information over-

come this drawbacks to some extent [3]. However, they are

uncompetitive with the microscale ones when dealing with

the dense networks. One reason is the resolution limitation

of communities detection methods. For example, the Multi-

level algorithm for modularity clustering [15] fails to resolve

small communities. The similarities of nodes based solely

on the network structure cannot be expressed by big com-

munities sufficiently, but they can be revealed by common

neighbors. In all, networks are likely to be driven by multi-

ple mechanisms, and combinations of methods in different

scales has already shown better efficiencies [12,16]. Since in-

formation of different scales can all contribute to the predic-

tion results, it is a natural idea to consider combining them

together, however if we simply combine two methods to-

gether, we may not always get a better result, for the errors

of the two methods may be strengthened.

Based on statistic inference, we establish a probabilistic

model to give a theoretical guarantee of a bi-scale combina-

tion. And a bi-scale model(BSM) is proposed to inherit the

merits of both single scale approaches. In microscale view,

we prove that the model can be treated exactly as a prob-

abilistic explanation for the local method RA. In mesoscale

view, we show that the model can be mapped directly onto

calculating matrix factorization for the blocks of the net-

works’ adjacency matrices, which allows us to apply any

non-negative factorizations. In this paper, we use the Convex

Nonnegative Matrix Factorization(CNMF) [18], where convex

means a convex constraint on the results of the factoriza-

tion. Experiments on several networks show that BSM out-

performs single scale methods. Furthermore, we find that

BSM is competitive with some classical methods, such as BM

and HRG, with a less computational complexity.

2. Model

In this section, we propose our Bi-scale method and use

a statistic inference model to give a theoretical guarantee.

The statistic inference model we concerned is an underly-

ing probability model, either because the observed network

is the result of a stochastic process, or because the sampling

is uncertain. Commonly the observed network of N nodes

can be represented by an N × N adjacency matrix Ao. In our

model We re-scale Ao
i j

by Ao
i j

← Ao
i j
/
∑

i j Ao
i j

. With this stochas-

tic normalization,
∑

i j Ao
i j

= 1. The entity Ao
i j

can be thought

as a joint occurrence probability P(X = i, X = j), where X is a

variable for the index of nodes.

Nodes in real data are often organized into clusters and

the probability of a link between two nodes depends on the

groups containing them. However these clusters member-

ships are still unknown to us. In the language of statistical

inference, they are latent variable. Assuming each cluster is a

combination of objects, the joint occurrence probability can

be factorized by Bayes’ formula as follows:

P(X = i, X = j) =
L∑

l=1

P(X = i, X = j|C = l)P(C = l)

=
L∑

l=1

P(X = i,C = l)P(X = j|C = l), (1)

where C is the variable for the index of clusters. Here, we as-

sume that the random variables X are conditional indepen-

dent for a given C.

Under the preparation above, the bi-scale model can be

divided into two parts using microscale and mesoscale in-

formation respectively. Scale can be determined by the sizes

of latent clusters. For microscale information, we can treat

each node as a cluster. And if clusters contain more than

one nodes, they can release mesoscale information. For each

scale, the proximate measure can be computed as a matrix.

Each component of the matrix is a result of joint occurrence

probability P(X = i, X = j). This gives two proximity mea-

sures for each link, and they can be combined together to

make final predictions.

In order to consider the microscale part, we assume that

each node is a cluster, so there are N-clusters. Eq. (1) can be

written as

P(X = i, X = j) =
N∑

l=1

P(X = i,C = l)P(X = j,C = l)

P(C = l)

=
N∑

l=1

P(X = i,C = l)P(X = j,C = l)∑N
k=1 P(X = K,C = l)

. (2)

Suppose P(X = i,C = l) = Ao
il
, we can express Eq. (2) as

P(X = i, X = j) =
N∑

l=1

Ao
il
Ao

jl∑K
k=1 Ao

lk

. (3)

Obviously, this measure is symmetrical. and a pair of nodes

can transfer some resource to each other, during which their

common neighbors can be treated as transmission media.

Each medium has a unit of the resource and distributes it

to its neighbors averagely. This is exactly the RA index of re-

scale matrix Ao.

Latent clusters contain more than one nodes in the

mesoscale part. For the reason of interpretability, we treat

the adjacent matrix Ao as an object-feature matrices for ob-

jects {xi, i = 1, . . . , N} and features {y j, j = 1, . . . , N}. In or-

der to reduce computability and get better results, we take

the strategy of blockwise approximation. Denote {Āo
k
, k =

1, . . . , K} as the K blocks in Ao finding by fast modularity clus-

tering algorithm [19]. For each block Āo
k
, we extend it to a N

× N matrix by using 0 to complete the matrix and denote it

by Ao
k
. Then the joint occurrence probability of an object and

a feature can be factorized as

P(X = i,Y = j) =
K∑

k=1

P(X = i|Y = j, A = k)P(A = k|Y = j)

× P(Y = j), (4)

where X is a variable for the index of objects, Y is a vari-

able for the index of features, A is a variable for the index
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