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In this paper, we study homoclinic solutions of the following second-order Hamiltonian system
ii(t) — L(t)u(t) + VW(t,u(t)) =0,

where t e R,u e RV, L: R — R¥N and W : R x RN — R. Applying a new symmetric Mountain Pass Theo-
rem established by Kajikiya, we prove the existence of infinitely many homoclinic solutions for the above
system in the case where L(t) is coercive but unnecessarily positive definite for all t € R, and W(t, x) is
only locally defined near the origin with respect to x. Our results significantly generalize and improve
related ones in the literature.

© 2016 Published by Elsevier Ltd.

1. Introduction

Consider the second-order Hamiltonian system
ii—L(t)u+ VW(t,u) =0, (1.1)

where teRueRV, L:R—-RVN  W:RxRV-R and
VW (t,x) = Vx\W(t,x). Here, as usual, we say that a solution
u(t) of (1.1) is homoclinic (to 0) if u(t) — 0 as t — =oo. In
addition, if u(t) £ 0 then u(t) is called a nontrivial homoclinic
solution.

In the last several decades, the existence and multiplicity of
homoclinic solutions for system (1.1) has been extensively inves-
tigated via critical point theory. See, for example, [1-6,8-21,23-
28,31,32] and the references therein. However, we emphasize that
in all these papers W(t, x) was always required to satisfy some
kind of growth conditions at infinity with respect to x, such as su-
perquadratic, asymptotically quadratic or subquadratic growth.

In recent paper, Zhang and Chu [29] studied the existence of
infinitely many homoclinic solutions for (1.1) in the case where L(t)
is coercive but unnecessarily positive definite for all t € R, and W(t,
x) is only locally defined near the origin with respect to x. More
precisely, they presented the following assumptions:
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(HO) L e C(R, RN*N) [(t) is a symmetric matrix for all t € R, and
there exists a constant
v < 2 such that limy . [t[>7VI(t) = oo, where

I(t) ;= inf (L(t)x, X);
XeRN, |x|=1
(H1) W e C1(R x RN, R), W(t, 0) = 0, and there exist constants ¢

> 0,8 > 0 and
max{3/2, (4 -v)/(3 - v)} <k < 2 such that

[VW (t,x)| < colx|“"1, V (t,x) € R x B5(0); (1.2)

(H2) limyy o Wlffl'z") = oo uniformly ¢ € R;

(H3) 2W (t,x) — (VW (t,x),x) >0, Y (t,x) € R x (Bs(0) \ {0});
(H4) W(t, —x) = W(t,x) for (t,x) € R x B5(0).

Since L(t) is not uniformly positive definite, the spectral of the
operator —% + L(t) may contain negative numbers and zero. The
energy functional associated with system (1.1) is indefinite, i.e., it
is bounded neither from below nor from above. The main difficulty
in [29] is how to prove the boundedness of the Palais-Smale se-
quence.

We note that (HO)-(H3) imply that there exists a constant ag >
0 such that L(t) + 2agly is uniformly positive definite for all t € R,
and W (t, x) + ag|x|? still satisfy (H1)-(H3). It is evident that (1.1)
is equivalent to the following system:

i — [L(t) + 2aoly]u + VIW (¢, u) + ap|u)?] = 0. (1.3)


http://dx.doi.org/10.1016/j.chaos.2016.02.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.02.034&domain=pdf
mailto:wxp31415@sina.com
http://dx.doi.org/10.1016/j.chaos.2016.02.034

48 X. Wang/ Chaos, Solitons and Fractals 87 (2016) 47-50

Following partially the idea of [7] in dealing with the Dirichlet
boundary problems, we will first modify W(t, x) for x outside a
neighborhood of the origin 0 to get W(t, x) and introduce the fol-
lowing modified Hamiltonian system

ii — [L(t) + 2aoly]u + VW (t, u) + ao|ul?] = 0, (1.4)

where W will be specified in Section 2. For system (1.4), the en-
ergy functional associated with it is even and bounded from be-
low. Hence, we can use a new symmetric mountain pass lemma
obtained in [7] to show that system (1.4) possesses a sequence of
homoclinic solutions, which converges to zero in L* norm. Conse-
quently, we obtain infinitely many homoclinic solutions for system
(1.1), see [29,30].

Before presenting our theorem, we introduce the following as-
sumptions:

(L1) L e C(R,RN*N) such that L(t) is a symmetric matrix for all
t e R and infg [(t) > —o0;

(L2) There exists a constant v < 2 such that
meas{t e R: [t|"L(t) # Mly} <oo, VY M=>0,

where meas( - ) denotes the Lebesgue measure in R;

(W1) W e C'(R x RN, R), W(t, 0) = 0, and there exist constants c,
> 0,8 > 0 and max{1,2/(3 —v)} <k < 2 such that

VW (t,x)| < colx|*", V¥ (t.x) € R x Bs(0): (15)
(W2) There exist a ty € R and a constant > 0 such that

liminf inf V(LX)

5 > -0
|x|—=0 te[to—n,to+n] |X|

and

. . W (t,x

limsup  inf %) = +00;

X0 telto-ntotn]  |X[2

(W3) W(t, —x) = W (t, x) for (t,x) € R x Bs(0).

Now, we are ready to state the main result of this paper.

Theorem 1.1. Assume that L and W satisfy (L1), (L2), (W1), (W2)
and (W3). Then system (1.1) possesses a sequence {u,} of homoclinic
solutions such that ||up|lec — 0 as n — oo.

Remark 1.2. A condition similar to (W2) on the nonlinearity W
was first introduced in [7] for the Dirichlet boundary problems.

Remark 1.3. In our theorem, L(t) is unnecessarily required to be
either uniformly positive definite or coercive. For example L(t) =
(t%| sint| — 1)Iy satisfies (L1) and (L2), but does not satisfy (HO). It
is easy to check that the following functions W satisfy (W1), (W2)
and (W3):

W(t,x) = cost |x|*3 +sint |x|P, p>4/3; (1.6)

W (t,x) = cost sin |x|*/%. (1.7)

One can see that they satisfy neither (H2) nor (H3).

2. Variational setting and some lemmas

Throughout this section, we make the following assumption in-
stead of (L1):

(L1") L e C(R,RN*N), for all t € R, L(t) is positive definite sym-
metric matrix and

(L()x,x) > |x|?, V (t,x) e R xRN,

We work in the Hilbert space
E— {u c H'(R.RY) : fR[|u|2 + (L, w]de < +oo}
equipped with the inner product
() = /R (@, ) + (L(Ow v)]dt, v ek,

which induces the norm
12
lul| = {f [l + (Lo, u)]dt} . uckE.
R

Evidently, E is continuously embedded into H' (R, RN) and hence
continuously embedded into LP(R,RN) for 2 < p < o, i.e., there
exists yp > 0 such that

lullp < ypllull, VucekE, (2.1)

where |[ul|, denotes the usual norm in LP(R,RN) for all 2 < p <
Q.

Lemma 2.1. [22] Under assumptions (L1’) and (L2), the embedding
from E into LP(R) is compact for 1 < pe (2/(3 —v), o0].

Choose r € (0, §/2). Define a cut-off function & e C' (R, R) satis-
fying

1, O0<t<r,

s(t):{ 0, t=>2r,

and —-2r <&/(t) <0 forr < t < 2r. In view of (W1), one has
W(t,x)| <colx®, V (t,x) € R x By (0).
Define

(2.2)

W(t,x) = E(IXDW(t, %) + co[1 = E(XDIIXIS, ¥ (£,X) € R x RV,

(2.3)
Lemma 2.2. Assume that (W1) holds. Then
[W(t,x)| < colx|, V (t,x) eR xRN (2.4)
and
VW (t,x)| < 11co|x|<1, V (t.x) e R x RN, (2.5)

Proof. It follows from (2.2) and (2.3) that (2.4) holds. By direct

computation, one has

§'(Ix])
Ix]

+ ok [1 = & (x> — co&” (IX[)[x[*~x,

which, together with (W1), (2.2) and |[£/(|x])||x] < 4, implies (2.5)
holds. O

VW (t,x) = E(]x) VW (L, x) + W (t, x)x

Now we define a functional ® on E by
O ) = 1/ [|u|2+(L(t)u,u)]dt—/W(t,u)dt.
2 R R

By Lemmas 2.1 and 2.2, under assumptions (L1’), (L2) and (W1),
the functional ® is of class C1(E, R). Moreover,

(2.6)

D) = %||u||2 - /R\/T/(t, wdt, YuckE 2.7)

and

(@' (u),v) = {u,v) — / (VW(t,u),v)dt, Y u,veE. (2.8)
R

Let X be a Banach space and A a subset of X. A is said to be
symmetric if u € A implies —u € A. Denote by I' the family of all
closed symmetric subset of X which does not contain 0. For any
AcT, define the genus y(A) of A by the smallest integer k such
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