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a b s t r a c t 

In this paper, we study homoclinic solutions of the following second-order Hamiltonian system 

ü (t) − L (t ) u (t ) + ∇W (t , u (t )) = 0 , 

where t ∈ R , u ∈ R 

N , L : R → R 

N×N and W : R × R 

N → R . Applying a new symmetric Mountain Pass Theo- 

rem established by Kajikiya, we prove the existence of infinitely many homoclinic solutions for the above 

system in the case where L ( t ) is coercive but unnecessarily positive definite for all t ∈ R , and W ( t, x ) is 

only locally defined near the origin with respect to x . Our results significantly generalize and improve 

related ones in the literature. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

Consider the second-order Hamiltonian system 

ü − L (t) u + ∇W (t, u ) = 0 , (1.1) 

where t ∈ R , u ∈ R 

N , L : R → R 

N×N , W : R × R 

N → R and 

∇W (t, x ) = ∇ x W (t, x ) . Here, as usual, we say that a solution 

u ( t ) of (1.1) is homoclinic (to 0) if u ( t ) → 0 as t → ±∞ . In 

addition, if u (t) �≡ 0 then u ( t ) is called a nontrivial homoclinic 

solution. 

In the last several decades, the existence and multiplicity of 

homoclinic solutions for system (1.1) has been extensively inves- 

tigated via critical point theory. See, for example, [1–6,8–21,23–

28,31,32] and the references therein. However, we emphasize that 

in all these papers W ( t, x ) was always required to satisfy some 

kind of growth conditions at infinity with respect to x , such as su- 

perquadratic, asymptotically quadratic or subquadratic growth. 

In recent paper, Zhang and Chu [29] studied the existence of 

infinitely many homoclinic solutions for (1.1) in the case where L ( t ) 

is coercive but unnecessarily positive definite for all t ∈ R , and W ( t, 

x ) is only locally defined near the origin with respect to x . More 

precisely, they presented the following assumptions: 
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(H0) L ∈ C(R , R 

N×N ) , L ( t ) is a symmetric matrix for all t ∈ R , and 

there exists a constant 

ν < 2 such that lim | t|→∞ 

| t | 2 −ν l(t ) = ∞ , where 

l(t) := inf 
x ∈ R N , | x | =1 

(L (t) x, x ) ;

(H1) W ∈ C 1 (R × R 

N , R ) , W ( t , 0) ≡ 0, and there exist constants c 0 
> 0, δ > 0 and 

max { 3 / 2 , (4 − ν) / (3 − ν) } < κ < 2 such that 

|∇W (t, x ) | ≤ c 0 | x | κ−1 , ∀ (t, x ) ∈ R × B δ(0) ; (1.2) 

(H2) lim | x |→ 0 
W (t,x ) 

| x | 2 = ∞ uniformly t ∈ R ; 

(H3) 2 W (t, x ) − (∇W (t, x ) , x ) > 0 , ∀ (t, x ) ∈ R × (B δ (0) \ { 0 } ) ; 
(H4) W (t, −x ) = W (t, x ) for (t, x ) ∈ R × B δ (0) . 

Since L ( t ) is not uniformly positive definite, the spectral of the 

operator − d 2 

dt 2 
+ L (t) may contain negative numbers and zero. The 

energy functional associated with system (1.1) is indefinite, i.e., it 

is bounded neither from below nor from above. The main difficulty 

in [29] is how to prove the boundedness of the Palais–Smale se- 

quence. 

We note that (H0)–(H3) imply that there exists a constant a 0 > 

0 such that L (t) + 2 a 0 I N is uniformly positive definite for all t ∈ R , 

and W (t, x ) + a 0 | x | 2 still satisfy (H1)–(H3). It is evident that (1.1) 

is equivalent to the following system: 

ü − [ L (t) + 2 a 0 I N ] u + ∇[ W (t, u ) + a 0 | u | 2 ] = 0 . (1.3) 
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Following partially the idea of [7] in dealing with the Dirichlet 

boundary problems, we will first modify W ( t, x ) for x outside a 

neighborhood of the origin 0 to get ̂ W (t, x ) and introduce the fol- 

lowing modified Hamiltonian system 

ü − [ L (t) + 2 a 0 I N ] u + ∇[ ̂  W (t, u ) + a 0 | u | 2 ] = 0 , (1.4) 

where ̂ W will be specified in Section 2 . For system (1.4) , the en- 

ergy functional associated with it is even and bounded from be- 

low. Hence, we can use a new symmetric mountain pass lemma 

obtained in [7] to show that system (1.4) possesses a sequence of 

homoclinic solutions, which converges to zero in L ∞ norm. Conse- 

quently, we obtain infinitely many homoclinic solutions for system 

(1.1) , see [29,30] . 

Before presenting our theorem, we introduce the following as- 

sumptions: 

(L1) L ∈ C(R , R 

N×N ) such that L ( t ) is a symmetric matrix for all 

t ∈ R and inf R l(t) > −∞ ; 

(L2) There exists a constant ν < 2 such that 

meas 
{

t ∈ R : | t | −νL (t ) �≥ MI N 
}

< ∞ , ∀ M > 0 , 

where meas( · ) denotes the Lebesgue measure in R ; 

(W1) W ∈ C 1 (R × R 

N , R ) , W ( t , 0) ≡ 0, and there exist constants c 0 
> 0, δ > 0 and max { 1 , 2 / (3 − ν) } < κ < 2 such that 

|∇W (t, x ) | ≤ c 0 | x | κ−1 , ∀ (t, x ) ∈ R × B δ(0) ; (1.5) 

(W2) There exist a t 0 ∈ R and a constant η > 0 such that 

lim inf | x |→ 0 
inf 

t∈ [ t 0 −η,t 0 + η] 

W (t, x ) 

| x | 2 > −∞ 

and 

lim sup 

| x |→ 0 

inf 
t∈ [ t 0 −η,t 0 + η] 

W (t, x ) 

| x | 2 = + ∞;

(W3) W (t, −x ) = W (t, x ) for (t, x ) ∈ R × B δ (0) . 

Now, we are ready to state the main result of this paper. 

Theorem 1.1. Assume that L and W satisfy (L1), (L2), (W1), (W2) 

and (W3). Then system (1.1) possesses a sequence { u n } of homoclinic 

solutions such that ‖ u n ‖ ∞ 

→ 0 as n → ∞ . 

Remark 1.2. A condition similar to (W2) on the nonlinearity W 

was first introduced in [7] for the Dirichlet boundary problems. 

Remark 1.3. In our theorem, L ( t ) is unnecessarily required to be 

either uniformly positive definite or coercive. For example L (t) = 

(t 2 | sin t| − 1) I N satisfies (L1) and (L2), but does not satisfy (H0). It 

is easy to check that the following functions W satisfy (W1), (W2) 

and (W3): 

W (t, x ) = cos t | x | 4 / 3 + sin t | x | p , p > 4 / 3 ; (1.6) 

W (t, x ) = cos t sin | x | 3 / 2 . (1.7) 

One can see that they satisfy neither (H2) nor (H3). 

2. Variational setting and some lemmas 

Throughout this section, we make the following assumption in- 

stead of (L1): 

(L1 ′ ) L ∈ C(R , R 

N×N ) , for all t ∈ R , L ( t ) is positive definite sym- 

metric matrix and 

(L (t) x, x ) ≥ | x | 2 , ∀ (t, x ) ∈ R × R 

N . 

We work in the Hilbert space 

E = 

{ 

u ∈ H 

1 (R , R 

N ) : 

∫ 
R 

[| ̇ u | 2 + (L (t) u, u ) 
]
d t < + ∞ 

} 

equipped with the inner product 

〈 u, v 〉 = 

∫ 
R 

[ ( ̇ u , ˙ v ) + (L (t) u, v ) ] d t, u, v ∈ E, 

which induces the norm 

‖ u ‖ = 

{ 

∫ 
R 

[| ̇ u | 2 + (L (t) u, u ) 
]
d t 

} 1 / 2 

, u ∈ E. 

Evidently, E is continuously embedded into H 

1 (R , R 

N ) and hence 

continuously embedded into L p (R , R 

N ) for 2 ≤ p ≤ ∞ , i.e., there 

exists γ p > 0 such that 

‖ u ‖ p ≤ γp ‖ u ‖ , ∀ u ∈ E, (2.1) 

where ‖ u ‖ p denotes the usual norm in L p (R , R 

N ) for all 2 ≤ p ≤
∞ . 

Lemma 2.1. [22] Under assumptions (L1 ′ ) and (L2), the embedding 

from E into L p (R ) is compact for 1 ≤ p ∈ (2 / (3 − ν) , ∞ ] . 

Choose r ∈ (0, δ/2). Define a cut-off function ξ ∈ C 1 (R , R ) satis- 

fying 

ξ (t) = 

{
1 , 0 ≤ t ≤ r, 
0 , t ≥ 2 r, 

and −2 r ≤ ξ ′ (t) < 0 for r < t < 2 r . In view of (W1), one has 

| W (t, x ) | ≤ c 0 | x | κ , ∀ (t, x ) ∈ R × B 2 r (0) . (2.2) 

Define 

̂ W (t, x ) = ξ (| x | ) W (t, x ) + c 0 [1 − ξ (| x | )] | x | κ , ∀ (t, x ) ∈ R × R 

N . 

(2.3) 

Lemma 2.2. Assume that (W1) holds. Then 

| ̂  W (t, x ) | ≤ c 0 | x | κ , ∀ (t, x ) ∈ R × R 

N (2.4) 

and 

|∇ ̂

 W (t, x ) | ≤ 11 c 0 | x | κ−1 , ∀ (t, x ) ∈ R × R 

N . (2.5) 

Proof. It follows from (2.2) and (2.3) that (2.4) holds. By direct 

computation, one has 

∇ ̂

 W (t, x ) = ξ (| x | ) ∇W (t, x ) + 

ξ ′ (| x | ) 
| x | W (t, x ) x 

+ c 0 κ[1 − ξ (| x | )] | x | κ−2 x − c 0 ξ
′ (| x | ) | x | κ−1 x, 

which, together with (W1), (2.2) and | ξ ′ (| x |)|| x | ≤ 4, implies (2.5) 

holds. �

Now we define a functional � on E by 

�(u ) = 

1 

2 

∫ 
R 

[| ̇ u | 2 + (L (t) u, u ) 
]
d t −

∫ 
R 

̂ W (t , u )d t . (2.6) 

By Lemmas 2.1 and 2.2 , under assumptions (L1 ′ ), (L2) and (W1), 

the functional � is of class C 1 (E, R ) . Moreover, 

�(u ) = 

1 

2 

‖ u ‖ 

2 −
∫ 
R 

̂ W (t , u )d t , ∀ u ∈ E (2.7) 

and 

〈 �′ (u ) , v 〉 = 〈 u, v 〉 −
∫ 
R 

(∇ ̂

 W (t , u ) , v )d t , ∀ u, v ∈ E. (2.8) 

Let X be a Banach space and A a subset of X. A is said to be 

symmetric if u ∈ A implies −u ∈ A . Denote by 	 the family of all 

closed symmetric subset of X which does not contain 0. For any 

A ⊂	, define the genus γ ( A ) of A by the smallest integer k such 
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