Infinitely many homoclinic solutions for a second-order Hamiltonian system with locally defined potentials ${ }^{\text {² }}$

Xiaoping Wang*
Department of Mathematics, Xiangnan College, Chenzhou, Hunan 423000, P.R. China

A R T I C L E I N F O

Article history:

Received 1 September 2015
Revised 20 February 2016
Accepted 26 February 2016
Available online 21 March 2016

2000 MSC:

34 C 37
58E05
70H05
Keywords:
Homoclinic solution
Hamiltonian system
Symmetric Mountain Pass Theorem

Abstract

In this paper, we study homoclinic solutions of the following second-order Hamiltonian system $\ddot{u}(t)-L(t) u(t)+\nabla W(t, u(t))=0$, where $t \in \mathbb{R}, u \in \mathbb{R}^{N}, L: \mathbb{R} \rightarrow \mathbb{R}^{N \times N}$ and $W: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$. Applying a new symmetric Mountain Pass Theorem established by Kajikiya, we prove the existence of infinitely many homoclinic solutions for the above system in the case where $L(t)$ is coercive but unnecessarily positive definite for all $t \in \mathbb{R}$, and $W(t, x)$ is only locally defined near the origin with respect to x. Our results significantly generalize and improve related ones in the literature.

© 2016 Published by Elsevier Ltd.

1. Introduction

Consider the second-order Hamiltonian system
$\ddot{u}-L(t) u+\nabla W(t, u)=0$,
where $\quad t \in \mathbb{R}, u \in \mathbb{R}^{N}, \quad L: \mathbb{R} \rightarrow \mathbb{R}^{N \times N}, \quad W: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R} \quad$ and $\nabla W(t, x)=\nabla_{x} W(t, x)$. Here, as usual, we say that a solution $u(t)$ of (1.1) is homoclinic (to 0) if $u(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. In addition, if $u(t) \not \equiv 0$ then $u(t)$ is called a nontrivial homoclinic solution.

In the last several decades, the existence and multiplicity of homoclinic solutions for system (1.1) has been extensively investigated via critical point theory. See, for example, [1-6,8-21,23$28,31,32$] and the references therein. However, we emphasize that in all these papers $W(t, x)$ was always required to satisfy some kind of growth conditions at infinity with respect to x, such as superquadratic, asymptotically quadratic or subquadratic growth.

In recent paper, Zhang and Chu [29] studied the existence of infinitely many homoclinic solutions for (1.1) in the case where $L(t)$ is coercive but unnecessarily positive definite for all $t \in \mathbb{R}$, and $W(t$, x) is only locally defined near the origin with respect to x. More precisely, they presented the following assumptions:

[^0](H0) $L \in C\left(\mathbb{R}, \mathbb{R}^{N \times N}\right), L(t)$ is a symmetric matrix for all $t \in \mathbb{R}$, and there exists a constant
$v<2$ such that $\lim _{|t| \rightarrow \infty}|t|^{2-v} l(t)=\infty$, where
$l(t):=\inf _{x \in \mathbb{R}^{N},|x|=1}(L(t) x, x) ;$
(H1) $W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}\right), W(t, 0) \equiv 0$, and there exist constants c_{0} $>0, \delta>0$ and
$\max \{3 / 2,(4-v) /(3-v)\}<\kappa<2$ such that
$|\nabla W(t, x)| \leq c_{0}|x|^{\kappa-1}, \quad \forall(t, x) \in \mathbb{R} \times B_{\delta}(0) ;$
(H2) $\lim _{|x| \rightarrow 0} \frac{W(t, x)}{|x|^{2}}=\infty$ uniformly $t \in \mathbb{R}$;
(H3) $2 W(t, x)-(\nabla W(t, x), x)>0, \forall(t, x) \in \mathbb{R} \times\left(B_{\delta}(0) \backslash\{0\}\right)$;
(H4) $W(t,-x)=W(t, x)$ for $(t, x) \in \mathbb{R} \times B_{\delta}(0)$.
Since $L(t)$ is not uniformly positive definite, the spectral of the operator $-\frac{d^{2}}{d t^{2}}+L(t)$ may contain negative numbers and zero. The energy functional associated with system (1.1) is indefinite, i.e., it is bounded neither from below nor from above. The main difficulty in [29] is how to prove the boundedness of the Palais-Smale sequence.

We note that (H0)-(H3) imply that there exists a constant $a_{0}>$ 0 such that $L(t)+2 a_{0} I_{N}$ is uniformly positive definite for all $t \in \mathbb{R}$, and $W(t, x)+a_{0}|x|^{2}$ still satisfy (H1)-(H3). It is evident that (1.1) is equivalent to the following system:
$\ddot{u}-\left[L(t)+2 a_{0} I_{N}\right] u+\nabla\left[W(t, u)+a_{0}|u|^{2}\right]=0$.

Following partially the idea of [7] in dealing with the Dirichlet boundary problems, we will first modify $W(t, x)$ for x outside a neighborhood of the origin 0 to get $\widehat{W}(t, x)$ and introduce the following modified Hamiltonian system
$\ddot{u}-\left[L(t)+2 a_{0} I_{N}\right] u+\nabla\left[\widehat{W}(t, u)+a_{0}|u|^{2}\right]=0$,
where \widehat{W} will be specified in Section 2. For system (1.4), the energy functional associated with it is even and bounded from below. Hence, we can use a new symmetric mountain pass lemma obtained in [7] to show that system (1.4) possesses a sequence of homoclinic solutions, which converges to zero in L^{∞} norm. Consequently, we obtain infinitely many homoclinic solutions for system (1.1), see [29,30].

Before presenting our theorem, we introduce the following assumptions:
(L1) $L \in C\left(\mathbb{R}, \mathbb{R}^{N \times N}\right)$ such that $L(t)$ is a symmetric matrix for all $t \in \mathbb{R}$ and $\inf _{\mathbb{R}} l(t)>-\infty$;
(L2) There exists a constant $v<2$ such that

$$
\operatorname{meas}\left\{t \in \mathbb{R}:|t|^{-v} L(t) \nsupseteq M I_{N}\right\}<\infty, \quad \forall M>0,
$$

where meas(.) denotes the Lebesgue measure in \mathbb{R};
(W1) $W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}\right), W(t, 0) \equiv 0$, and there exist constants c_{0} $>0, \delta>0$ and $\max \{1,2 /(3-v)\}<\kappa<2$ such that

$$
\begin{equation*}
|\nabla W(t, x)| \leq c_{0}|x|^{\kappa-1}, \quad \forall(t, x) \in \mathbb{R} \times B_{\delta}(0) \tag{1.5}
\end{equation*}
$$

(W2) There exist a $t_{0} \in \mathbb{R}$ and a constant $\eta>0$ such that

$$
\liminf _{|x| \rightarrow 0} \inf _{t \in\left[t_{0}-\eta, t_{0}+\eta\right]} \frac{W(t, x)}{|x|^{2}}>-\infty
$$

and

$$
\limsup _{|x| \rightarrow 0} \inf _{t \in\left[t_{0}-\eta, t_{0}+\eta\right]} \frac{W(t, x)}{|x|^{2}}=+\infty ;
$$

(W3) $W(t,-x)=W(t, x)$ for $(t, x) \in \mathbb{R} \times B_{\delta}(0)$.
Now, we are ready to state the main result of this paper.
Theorem 1.1. Assume that L and W satisfy (L1), (L2), (W1), (W2) and (W3). Then system (1.1) possesses a sequence $\left\{u_{n}\right\}$ of homoclinic solutions such that $\left\|u_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.

Remark 1.2. A condition similar to (W2) on the nonlinearity W was first introduced in [7] for the Dirichlet boundary problems.
Remark 1.3. In our theorem, $L(t)$ is unnecessarily required to be either uniformly positive definite or coercive. For example $L(t)=$ $\left(t^{2}|\sin t|-1\right) I_{N}$ satisfies (L1) and (L2), but does not satisfy (H0). It is easy to check that the following functions W satisfy (W1), (W2) and (W3):
$W(t, x)=\cos t|x|^{4 / 3}+\sin t|x|^{p}, \quad p>4 / 3 ;$
$W(t, x)=\cos t \sin |x|^{3 / 2}$.
One can see that they satisfy neither (H2) nor (H3).

2. Variational setting and some lemmas

Throughout this section, we make the following assumption instead of (L1):
($\mathrm{L} 1^{\prime}$) $L \in C\left(\mathbb{R}, \mathbb{R}^{N \times N}\right)$, for all $t \in \mathbb{R}, L(t)$ is positive definite symmetric matrix and
$(L(t) x, x) \geq|x|^{2}, \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{N}$.

We work in the Hilbert space
$E=\left\{u \in H^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right): \int_{\mathbb{R}}\left[|\dot{u}|^{2}+(L(t) u, u)\right] \mathrm{d} t<+\infty\right\}$
equipped with the inner product
$\langle u, v\rangle=\int_{\mathbb{R}}[(\dot{u}, \dot{v})+(L(t) u, v)] \mathrm{d} t, \quad u, v \in E$,
which induces the norm
$\|u\|=\left\{\int_{\mathbb{R}}\left[|\dot{u}|^{2}+(L(t) u, u)\right] \mathrm{d} t\right\}^{1 / 2}, \quad u \in E$.
Evidently, E is continuously embedded into $H^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and hence continuously embedded into $L^{p}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ for $2 \leq p \leq \infty$, i.e., there exists $\gamma_{p}>0$ such that
$\|u\|_{p} \leq \gamma_{p}\|u\|, \quad \forall u \in E$,
where $\|u\|_{p}$ denotes the usual norm in $L^{p}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ for all $2 \leq p \leq$ ∞.

Lemma 2.1. [22] Under assumptions (L1') and (L2), the embedding from E into $L^{p}(\mathbb{R})$ is compact for $1 \leq p \in(2 /(3-v), \infty]$.

Choose $r \in(0, \delta / 2)$. Define a cut-off function $\xi \in C^{1}(\mathbb{R}, \mathbb{R})$ satisfying
$\xi(t)= \begin{cases}1, & 0 \leq t \leq r, \\ 0, & t \geq 2 r,\end{cases}$
and $-2 r \leq \xi^{\prime}(t)<0$ for $r<t<2 r$. In view of (W1), one has
$|W(t, x)| \leq c_{0}|x|^{\kappa}, \quad \forall(t, x) \in \mathbb{R} \times B_{2 r}(0)$.
Define
$\widehat{W}(t, x)=\xi(|x|) W(t, x)+c_{0}[1-\xi(|x|)]|x|^{\kappa}, \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{N}$.

Lemma 2.2. Assume that (W1) holds. Then
$|\widehat{W}(t, x)| \leq c_{0}|x|^{\kappa}, \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{N}$
and
$|\nabla \widehat{W}(t, x)| \leq 11 c_{0}|x|^{\kappa-1}, \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{N}$.
Proof. It follows from (2.2) and (2.3) that (2.4) holds. By direct computation, one has

$$
\begin{aligned}
\nabla \widehat{W}(t, x)= & \xi(|x|) \nabla W(t, x)+\frac{\xi^{\prime}(|x|)}{|x|} W(t, x) x \\
& +c_{0} \kappa[1-\xi(|x|)]|x|^{\kappa-2} x-c_{0} \xi^{\prime}(|x|)|x|^{\kappa-1} x
\end{aligned}
$$

which, together with (W1), (2.2) and $\left|\xi^{\prime}(|x|)\right||x| \leq 4$, implies (2.5) holds.

Now we define a functional Φ on E by
$\Phi(u)=\frac{1}{2} \int_{\mathbb{R}}\left[|\dot{u}|^{2}+(L(t) u, u)\right] \mathrm{d} t-\int_{\mathbb{R}} \widehat{W}(t, u) \mathrm{d} t$.
By Lemmas 2.1 and 2.2, under assumptions (L1'), (L2) and (W1), the functional Φ is of class $C^{1}(E, \mathbb{R})$. Moreover,
$\Phi(u)=\frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}} \widehat{W}(t, u) \mathrm{d} t, \quad \forall u \in E$
and
$\left\langle\Phi^{\prime}(u), v\right\rangle=\langle u, v\rangle-\int_{\mathbb{R}}(\nabla \widehat{W}(t, u), v) \mathrm{d} t, \quad \forall u, v \in E$.
Let X be a Banach space and A a subset of X. A is said to be symmetric if $u \in A$ implies $-u \in A$. Denote by Γ the family of all closed symmetric subset of X which does not contain 0 . For any $A \subset \Gamma$, define the genus $\gamma(A)$ of A by the smallest integer k such

https://daneshyari.com/en/article/1888740

Download Persian Version:
https://daneshyari.com/article/1888740

Daneshyari.com

[^0]: * This work is partially supported by the NNFC (No: 11471278) of China.
 * Tel.: 135413328831.

 E-mail address: wxp31415@sina.com

