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a b s t r a c t

In the present paper we consider an SEIR type epidemic model with transport related infection

between two cities. It is observed that transportation among regions has a strong impact on

the dynamic evolution of a disease which can be eradicated in the absence of transportation.

Transportation can lead to the incorporation of a positive risk probability. The epidemiological

threshold, commonly known as the basic reproduction number, is derived and it is observed

that when the basic reproduction number is less than unity the disease dies out, where as

if it exceeds unity the disease may persist in the system. A thorough dynamical behavior of

the constructed model is studied. We formulate and solve an optimal control problem using

vaccination as a control tool. Extensive numerical simulations are carried out based on our

analytical results. Finally we try to relate our work with a real world problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling is a very effective tool to study

and analyze different epidemiological problems. In epidemi-

ology models allow us to predict the population level epi-

demic dynamics from an individual level knowledge of epi-

demiological factors, the long term behavior from the early

invasion dynamics, or the impact of vaccination on the

spread of infection. Though there is a long and distinguished

history of mathematical modeling in epidemiology, however,

it was not until the early 1990s that the increasingly popular

dynamical systems approaches where applied to epidemi-

ology. Some interesting and important development can be

found in [8,10,14–16,18].

With the expansion of computing, there has been an ex-

plosion in the development and use epidemiological mod-
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els, however, deficiencies still persist in the use of mathe-

matical models. A mathematical model on epidemic prob-

lem would be more realistic if population dispersal is con-

sidered. SARS could be a good example of infectious dis-

ease, which was broke out in almost all parts of China and

some other parts of the world only due to people’s disper-

sal. Takeuchi et al. [27], Wang and Wang [30], Wang and

Mulone [31], Wang and Zhao [32,33] proposed and analyzed

epidemic models to describe the dynamical behavior of dis-

ease spread between multiple patches. Arino and Vanden

Driessche [1], Wan and Cui [29] proposed multicity epidemic

models to study the dynamics of infectious diseases. Liu and

Takeuchi [21] considered a transport related epidemic model

with entry screenings. In a later work, Liu et al. [20] consid-

ered another transport related epidemic model with both en-

try and exit screenings. Arino and Driessche [1] investigated

the effect of population dispersal among n patches on the

spread of a disease. Their numerical simulations show that,

if a disease can extinct in two patches when they are iso-

lated, it can be still extinct within two patches when disper-

sal rates of individuals are in some range, otherwise it will
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be endemic. Their simulation also shows that, if the basic

reproduction numbers of isolated patches are not very large

and the contact rates in two patches are not very large too,

population dispersal may help eradicate the diseases which

can be endemic in either patch when they are isolated. All

the above works ignore the possibility for the individuals to

become infective during travel. Allen et al. [2] first proposed

a SIS epidemic model including transport related infection

on disease spread. Recently, Chen et al. [4] also proposed an

SIR model with transport related infections. Inspite of the

above stated articles epidemic models with population dis-

persal needs to be further research. From this view point, in

our present work, we consider an epidemic model with pop-

ulation dispersal from one place to another. For simplicity, we

consider only the population dispersal between two cities.

Presently different control measures are applied to im-

prove control and ultimately to eradicate the infection from

the population. Among all the control measures vaccination

is one of the most important and effective controls. It acts

by simulating a host immune response such that immunized

individuals are protected against infection. Some works us-

ing vaccination control can be found in [15,16,23,28,34]. Kar

and Jana describe an SIRV model to minimize the infected

population as well as the costs require to control the disease

by using vaccination and treatment. Rodrigues et al. [26] in-

vestigated the optimal vaccination strategy for the dengue

epidemic considering both the costs of treatment of infected

individuals and the costs of vaccination.

In the present article we consider an epidemic model with

population dispersal and vaccination as a control measure.

Vaccination operates by reducing the number of suscepti-

ble individuals in the population. Further one of the impor-

tant phenomena in epidemic model is the form of disease

transmission. In most of the articles, authors consider disease

transmission in a bilinear form. But the main drawback of the

bilinear type force of infection rate is, if either of susceptible

or infected population goes to higher range, then the disease

transmitted in a huge rate compare to the original rate. To

overcome this drawback, we consider here the disease trans-

mission in a saturated form. For more details about the sat-

uration form, one may read the articles by Zhang et al. [35],

Chong et al. [5] and references therein.

The paper is organized as follows: In Section 2 we de-

scribe the model assumptions and the corresponding math-

ematical model. The model is analyzed in Section 3. In

Section 4 we construct an optimal control problem and solve

it by considering vaccination as the control. Some simulation

works are illustrated in Section 5, and a brief conclusion is

given in the last section.

2. Model formulation

In this section we formulate a SEIR epidemic model with

population dispersal between two cities. The model is for-

mulated with the state variables Si, Ei, Ii, Ri and Ni (i = 1, 2)

that represent respectively, the number of susceptible, ex-

posed, infected, recovered individuals and total population

in city i, where Ni = Si + Ei + Ii + Ri for i = 1, 2. For simplicity

we consider that both the cities are identical in the sense of

population density, economics, medical services, living con-

dition and disease transmission probability etc. This enables

us to consider the parameters associated with the system are

identical for both the cities.

To construct the model we make the following assump-

tions.

• A is the total recruitment at any time t. Among them

u(t) portion is vaccinated and hence goes to the recov-

ered. The rest portion remains to the susceptible class. We

also assume that a susceptible individual goes into the

infected class after being infected through the exposed

class.
• For the transmission of disease, saturated incidence rate

of the form
βSiIi
1+ηIi

(i = 1, 2) is considered. β is the maxi-

mum contact rate between susceptible and infected indi-

viduals or known as a parameter for the force of infection

and η is the reciprocal of half saturation constant. In this

incidence rate the number of effective contacts between

the infected and susceptible individuals may saturate at

high infecting levels due to crowding effect of the infected

individuals or due to behavioral change of the suscepti-

ble individuals. It also prevents the unboundedness of the

contact rates (see [35]).
• There is a direct transport between two cities. Per capita

dispersal rate of individuals of every city i to city j ( j �=
i, i, j = 1, 2) is taken as α.

• When the individuals in city j travel to city i, disease is

transmitted with the incidence rate
γαS j I j

1+ηI j
, j = 1, 2 with a

transmission rate γα, and that portion of individual goes

to the exposed class from susceptible class (γ is the trans-

port related disease transmission rate and j �= i, i, j =
1, 2).

• ρ is the per capita rate by which exposed individuals be-

come infected individuals. It is evident that sometimes

the pathogen of an infectious disease enables a person ex-

posed for disease but due to high immunity power and

the immune system producing antibodies against anti-

gens enabling to destroy the harmful substances, they

can recover without being infected. Therefore, we assume

that a portion of the exposed individual directly moves to

the recovered class without being infected.
• Natural death rate for each class of individuals of both the

cities are taken as d. Further we assume that infected in-

dividual’s per capita death rate is δ.
• The recovery rate of infected individual is taken as b.
• After recovery from the disease, some portion of the in-

dividuals may be susceptible for the disease and this por-

tion is taken as σ .
• The individuals have no birth or death during their travel.
• Susceptible individuals become infected during travel

(see [2,4]).

Following the above assumptions we construct a trans-

port related SEIRS epidemic model given as:

dS1

dt
= A(1 − u) − βS1I1

1 + ηI1
− dS1 + σR1

−αS1 + αS2 − γαS2I2
1 + ηI2

,

dE1

dt
= βS1I1

1 + ηI1
− (d + ρ + ξ + α)E1 + αE2 + γαS2I2

1 + ηI2
,
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