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a b s t r a c t

We study a spatial model of social interactions. Though the properties of the spatial equilib-

rium have been largely discussed in the existing literature, the stability of equilibrium remains

an unaddressed issue. Our aim is to fill up this gap by introducing dynamics in the model and

by determining the stability of equilibrium. First we derive a variational equation useful for

the stability analysis. This allows to study the corresponding eigenvalue problem. While odd

modes are shown to be always stable, there is a single even mode of which stability depends

on the model parameters. Finally various numerical simulations illustrate our theoretical re-

sults.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The economic literature on spatial agglomerations has

been emphasizing the role of increasing returns in the pro-

duction sector as favoring the spatial clustering of economic

activities, see [1]. However, it is known that both market

and non-market forces play an important role in determining

the balance between agglomeration and dispersion forces in

a spatial economy. In particular, social interactions through

face-to-face contacts also contribute to the gathering of in-

dividuals in villages, agglomerations, or cities, see [2]. Beck-

mann [3] introduced social interactions into a land market

model. In his model, the spatial equilibrium structure results

from the interplay between the agglomeration force gener-

ated by social interactions and the dispersion force chan-

neled by land prices. Beckmann’s work has been revisited by

Fujita and Thisse [4], Mossay and Picard [5], and Blanchet

et al. [6] by studying further the properties of the spatial

equilibrium. In particular, Mossay and Picard [5] have shown

that Beckmann’s equilibrium along a segment is unique and
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have extended the analysis along a circle. Blanchet et al. [6]

have extended Beckmann’s framework so as to encompass

general agents’ preferences: along a segment, the uniqueness

of spatial equilibrium holds for a large class of utility func-

tions. Though the static aspects of Beckmann’s framework

have been largely studied, dynamic aspects of the model

have not received attention yet. The purpose of this paper

is to study the stability of spatial equilibrium in Beckmann’s

model, an issue which is left unaddressed in the existing

literature.

First, we extend the spatial model of social interactions

by Mossay and Picard [5] to a dynamic setting accounting for

the fact that individuals tend to relocate to locations provid-

ing them with higher utility levels. This leads to an integro-

differential equation governing the evolution of the popula-

tion distribution over space and time. In the New Economic

Geography literature (see e.g. [1]), most models are often dis-

crete and usually involve a small number of locations. In that

case, stability methods require the study of a finite number

of eigenvalues (e.g. [7,8]). In that literature, dynamic models

set in continuous space, as is the case here, are rare. The few

existing studies rely on the method of normal modes to ana-

lyze stability; e.g. [1,9,10] or [11]. In contrast here, we derive

a variational equation for stability, and only then study the

even and odd modes of the eigenvalue problem.
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Second, we present various numerical simulations illus-

trating our theoretical results. For this purpose we perform

simulations for stable and unstable parameter configurations

as well as for various initial conditions such as uniform ran-

dom noise or multiple-center configurations.

Section 2 provides the dynamic extension of the

model. The stability analysis is presented in Section 3. In

Section 4, numerical simulations are performed and ex-

plained. Section 5 concludes.

2. The spatial model of social interactions

Our model builds on the spatial model of social interac-

tions by Mossay and Picard [5], and Blanchet et al. [6] along a

line segment. Let us denote the density of agents in location

x at time t by λ(x, t). Agents benefit from social contacts with

other agents. In order to establish those contacts, agents have

to travel along the segment. The social utility that an agent in

location x derives from interacting with other agents is given

by

S(x, t) = α

∫
λ(y, t) dy − τ

∫
|x − y|λ(y, t) dy (1)

where the first integral describes the social interactions with

other agents with α > 0 and the second one accounts for the

traveling cost incurred to meet them with τ > 0. The utility

V(x, t) of agents consists of the social utility minus a disutility

resulting from congestion

V (x, t) = S(x, t) − β λ(x, t) (2)

where βλ(x, t) is the congestion cost with β > 0. In [5],

the congestion cost results from congestion in the land mar-

ket: higher agent densities lead to higher land prices, which

translates into a disutility. In that paper, the agents’ prefer-

ence for land is chosen so that the resulting congestion cost

is linear in λ, which is the functional form we also retain in

this paper.

We now extend the static framework established by

Mossay and Picard to a dynamic setting. In our model,

agents tend to relocate towards locations providing them

with higher utilities:

∂λ

∂t
= k [V (x, t) − V̄ (t)] λ(x, t) (3)

where V̄ (t) denotes the first spatial moment of the utility,

∫λ(y, t)V(y, t) dy, and k > 0 a mobility parameter.

2.1. Invariant manifold

By integrating Eq. (3) over the whole domain and by de-

noting :

I =
∫

λ(y, t) dy , (4)

we obtain the following equation for I:

dI

dt
= kV̄ (t) [1 − I] , (5)

we see that I = 1 is an invariant manifold associated with

the dynamics given by Eq. (3). The transverse stability of this

manifold is given by the sign of V̄ . If V̄ > 0 the manifold is

locally stable. We will return to this point latter.
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Fig. 1. Steady solution λ(s)(x) for α = 1, β = 2 and τ = 1 such that δ = 1 and

b = π/2.

2.2. Steady-state solution

Let us now look for a steady-state solution to Eq. (3). If

such a solution exists it satisfies:

V (x, t) = V̄ (t) = constant (6)

or equivalently

τ

∫
|x − y|λ(s)(y) dy + β λ(s)(x) = constant (7)

where the superscript s denotes the steady-state solution. By

construction, the steady-state solution of our model corre-

sponds to the spatial equilibrium studied in [5]. Without loss

of generality, we restrict the search for a steady-state solu-

tion on finite support. Therefore, we can assume that λ(s)(x)

is centered around x = 0 with support [−b,+b]. By differen-

tiating Eq. (7) twice with respect to x, Mossay and Picard [5]

derived the spatial equilibrium equation as

∂2λ(s)(x)

∂x2
+ δ2 λ(s)(x) = 0 , (8)

where δ2 = 2τ/β . Taking into account the continuity of the

solution at support edges, the steady-state solution is given

by

λ(s)(x) =
{

C cos(δx) for x ∈ [−b,+b]

0 for x /∈ [−b,+b]
. (9)

Now we will be interested mainly in studying solutions that

are contained into the invariant manifold I = 1. Therefore we

can compute the parameters b and the amplitude C as a func-

tion of the problem parameters as follows:

b = π

2δ
= π

2
√

2

√
β

τ
; C = δ

2
=

√
τ

2β
. (10)

Once the steady-state solution is determined we can com-

pute V̄ explicitly as a function of the model parameters:

V̄ = p = α − π

2
√

2

√
βτ . (11)

where we define the parameter p that is linked to the stability

of the invariant manifold. If p > 0 the invariant manifold I = 1

is transversely stable. The solution (9) is represented in Fig. 1

for some specific parameter values.

The above steady state, once the parameters α, β , τ have

been fixed, has been shown to be unique, see [5], or [6]. The

main purpose of this paper is to study the stability of the
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