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a b s t r a c t 

We propose that a handle could be put on big data by looking at the systems that actually generate the 

data, rather than the data itself, realizing that there may be only few generic processes involved in this, 

each one imprinting its very specific structures in the space of systems, the traces of which translate into 

feature space. From this, we propose a practical computational clustering approach, optimized for coping 

with such data, inspired by how the human cortex is known to approach the problem. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In ‘big data’ we deal with the empirical observation of an 

explosion of the amount of information available to us, where 

this information stretches over multiple scales of characteristics. 

Much of this information was already around, but simply not 

sensed. In the past, many approaches have attempted to cope with 

similar problems; particularly, methods that put a focus on un- 

structured data, natural language, filtering, network and Bayesian 

modeling, and machine learning (such as neural networks). Other 

approaches have emphasized the importance of parallel or hier- 

archically scalable computational solutions. For the definition of 

big data [1] , it is popular to refer to: a) a significant growth in 

the volume, b) velocity of arrival and c) variety and variability of 

data. For more than general recommendations and solutions, this 

seems, however, a too general problem formulation. The ‘big data’ 

we have in mind has several concrete characteristics, though not 

necessarily all of them at the same time: multi-source, multi-scale, 

high-dimensional, dynamic-state, and non-linear characteristics (cf. 

Fig. 1 ). These properties appear to be core aspects of the big data 

problem and require novel approaches and fresh views. Below, we 

present such an approach that is directly based on these aspects. 

Current methodology in big data suggests the following se- 

quence of processing steps: data acquisition; cleaning, extrac- 

tion and annotation; aggregation, integration, and representation; 
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modeling and analysis; interpretation. As tools, this methodol- 

ogy suggests to make heavy use of data-analyzing methods (e.g., 

data fusion, sub-sampling, filtering, dimension-reduction, sparse 

representation, parallel calculation, clustering; transfer-, online-, 

deep-learning methods, etc.). All of these methods have, however, 

unspoken assumptions regarding the direction the processing 

should push the data into; how this direction should be chosen, 

has, however, not been sufficiently addressed and is generally not 

as trivial and harmless as it may appear at first sight. Moreover, 

one key difficulty in big data is that many emerging data relate to 

compositions of signals from very different origins, recorded at the 

same time, but otherwise not necessarily closely related (cf. Fig. 1 ). 

The complexity of such a ‘signal space’ appears to be prohibitively 

difficult to get a grip on (in face of this difficulty, the mentioned 

data-analyzing tools are not sufficiently powerful). The wealth and 

breadth of data could, however, be handled if we are able to iden- 

tify data structures that intrinsically bind data items into sets that 

we then can jointly process and find simple descriptors of. We 

push the viewpoint that, at least for a substantial subset of the big 

data cases related to ‘natural’ (i.e., physical) data, such generic and 

universal structures do exist, and can to a substantial extent, guide 

and substantially abbreviate the methodological sequence of data 

extraction, cleaning, aggregation and integration. Our hypothesis is 

that such big data could be much better understood, and more ef- 

ficiently be dealt with, from the space composed by generic data- 

generating systems: the ‘system space’. The main goal of this paper 

is to exemplify how salient properties of the data, having simple 

origins in the space of systems, are traceable in the corresponding 
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Fig. 1. Characteristic examples of big data in nature. (a) Forest ambient sound 

spectrogram. We are able to associate different animals to different co-temporally 

recorded sounds, due to sound cues. (b) Surface protein marker expression levels in 

healthy human bone marrow cells [2] , cells (horizontal axis) already clustered into 

cell types (13 dimensions, high variation). 

‘feature space’, and become, in this way, identifiable in the ‘signal 

space’. For illustrating this perspective, we will merge earlier pub- 

lished [3–6] with newer, previously unpublished results, including 

a developed clustering tool that takes considerable advantage of 

these insights. 

During evolution, biological systems already dealt with chal- 

lenges similar to today’s ‘big data’ problem. This leads one to 

expect that biology has consistently developed toward solutions 

(jointly in generation, reception and processing of vital signals) 

that are able to cope with such problems: solutions that are 

structurally robust in the mathematical sense, forgiving regarding 

detail omission and, as an essential consequence of robustness, 

promise to be simple. This not only strongly reduces the solution 

space of interest to us; the features that come along with these 

solutions will moreover express underlying universality. From the 

physics point of view, this implies that the features should follow 

simple scaling laws. From the modeling point of view, this implies 

that robust models based on a minimal amount of well-chosen 

measured biological data, could be used to deal with a substantial 

part of the signal space. In the following, we shall explore some 

instances where physics indeed provides such an insight and per- 

mits ‘rescaling’ the big data problem toward a few fundamental 

categories of data. 

The ultimate way by which physics imprints structure into sys- 

tem space is through the data-generating process itself. Our foray 

will exhibit that while power law distributed features are natural 

and robust, they have only a few, but generic, origins in system 

space (whereas random compositions of signals from unrelated 

origins emerge as noise and can be naturally discarded). To ex- 

plore this connection, we separate data-generating systems into: 

a) systems that only share a generic nonlinear building plan, but 

do not interact [4] , b) systems that exchange nonlinear periodic 

interaction (our example will be Arnol’d tongues [3] or the bio- 

logical cochlea [7] ) and c) systems that interact in a more general, 

less time-dependent, manner, not requiring explicit description of 

node dynamics (examples would be air transport or ‘www’ net- 

works) [5] . While we see this triage as fundamental, this includes 

no completeness claim. We will show that each of these cases im- 

prints distinct structures in system space (with some properties 

even shared) and that this translates into corresponding proper- 

ties of the feature space. We will then exhibit a few cases where 

biology implements these principles and demonstrate how our ap- 

proach leads to a fresh view on neuronal coding and signaling. As a 

final demonstration of the approach’s practical usefulness, we will 

discuss a derived clustering algorithm that is superior to the stan- 

dard clustering tools used in big data. 

2. Families of isolated nonlinear systems 

Biological systems often exhibit strongly nonlinear building 

plans. A notion of connectivity among such systems is then im- 

plied by the similarity of their building plans. This situation may 

be interpreted as nodes having a continuity of variable strength of 

connections. In feature space, close proximity is then reflected by 

qualitative similarity, e.g., by equal periodicity or stability proper- 

ties. For this case, our paradigm will be most thoroughly worked 

out. 

On the parameter spaces underlying the definition of a nonlin- 

ear system, an infinity of system constructions are possible. Physics 

of the last century has however revealed that nonlinearity intro- 

duces order in the complexity that such constructions offer, by 

means of universality expressed in scaling behavior. We focus on 

the simplest generic nonlinear systems and ask the following ques- 

tion: where in the parameter space are the systems that share 

similar behavior and what universal scaling properties do they ex- 

hibit? In answering this question, we are naturally led to so-called 

shrimp-shaped parameter space domains [4] to which systems ex- 

hibiting identical periodicity are confined. The geometric form of 

these shrimp-shaped areas is surprisingly intricate, but all of them 

have a common building principle and follow scaling rules that 

manifest in feature space. For a single parameter, the set leading 

to periodic behavior is an interval. From this, a cartesian product of 

such intervals could be expected in higher dimensional parameter 

spaces (i.e., a square or a circle in dimension two). This conclusion 

underlies the main computational approaches of bioinformatics 

(e.g., k -means clustering), but is inappropriate. The shrimp-shaped 

periodicity domains underlying real-world systems have no affinity 

with the expected Gaussian cloud (cf. Fig. 2 ), but instead general- 

ize Feigenbaum intervals to two parameters. Their existence and 

convex-concave form was already predicted by Shilnikov [8–11] 

and discussed in more details by Gaspard, Kapral and Nicolis [12] . 

Only recently, they were corroborated in real-world dynamical sys- 

tems (electronic circuits [4,13,14] , laser systems [15] , biochemical 

systems [6,16–18] and in models of biological neurons [6] ). 

The multitude of scaled versions of the shrimp template reflect 

the simple building principle of the generating process. Shrimps 

express the interaction of two or more largely independent pa- 

rameters in creating points that have a full set of zero partial 

derivatives, to ensure stable periodic behavior. From this observa- 

tion, the shrimps phenomenon can be explained in a simple way 

for flows and maps [12] . For simplicity of argument we consider 

the discrete formulation [4,19] . The dissipative Hénon map [20] 

is the paradigm for two-dimensional dissipative nonlinear maps; 
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