Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks

Vimal Singh *
Department of Electrical-Electronics Engineering, Atilim University, Ankara 06836, Turkey

Accepted 20 June 2007

Abstract

The question of estimating the upper limit of the norm $\|\boldsymbol{B}\|_{2}$ of the delayed connection weight matrix \boldsymbol{B}, which is a key step in some recently reported global robust stability criteria for delayed neural networks (DNNs), is considered. An estimate of the upper limit of $\|\boldsymbol{B}\|_{2}$ was previously given by Cao, Huang and Qu . More recently Singh has presented an alternative estimate. Presently it is shown that an estimate of the upper limit of $\|\boldsymbol{B}\|_{2}$ may be found in some cases, which would be an improvement over each of the above-mentioned two estimates. Some observations concerning the determination of the least conservative upper limit of $\|\boldsymbol{B}\|_{2}$ are presented.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the delayed neural network (DNN) model defined by the following state equations [1-42]:

$$
\begin{equation*}
\dot{\boldsymbol{x}}(t)=-\boldsymbol{C x}(t)+\boldsymbol{A} \boldsymbol{f}(\boldsymbol{x}(t))+\boldsymbol{B} \boldsymbol{f}(\boldsymbol{x}(t-\tau))+\boldsymbol{u} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}=-c_{i} x_{i}(t)+\sum_{j=1}^{n} a_{i j} f_{j}\left(x_{j}(t)\right)+\sum_{j=1}^{n} b_{i j} f_{j}\left(x_{j}(t-\tau)\right)+u_{i} \quad i=1,2, \ldots, n, \tag{2}
\end{equation*}
$$

where $\boldsymbol{x}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right]^{\mathrm{T}}$ is the state vector associated with the neurons, $\boldsymbol{C}=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is a positive diagonal matrix $\left(c_{i}>0, i=1,2, \ldots, n\right), \boldsymbol{A}=\left(a_{i j}\right)_{n \times n}$ and $\boldsymbol{B}=\left(b_{i j}\right)_{n \times n}$ are the connection weight and the delayed connection weight matrices, respectively, $\boldsymbol{u}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]^{\mathrm{T}}$ is a constant external input vector, τ is the transmission delay, the $f_{j}, j=1,2, \ldots, n$, are the activation functions, $\boldsymbol{f}(\boldsymbol{x}(\cdot))=\left[f_{1}\left(x_{1}(\cdot)\right), f_{2}\left(x_{2}(\cdot)\right), \ldots, f_{n}\left(x_{n}(\cdot)\right)\right]^{\mathrm{T}}$, and the superscript ' T ' to any vector (or matrix) denotes the transpose of that vector (or matrix). It is understood that the activation functions satisfy the following restrictions

[^0]$$
\left|f_{j}(\xi)\right| \leqslant M_{j} \quad \forall \xi \in R ; \quad M_{j}>0, \quad j=1,2, \ldots, n
$$
and
$$
0 \leqslant \frac{f_{j}\left(\xi_{1}\right)-f_{j}\left(\xi_{2}\right)}{\xi_{1}-\xi_{2}} \leqslant L_{j} \quad j=1,2, \ldots, n
$$
for each $\xi_{1}, \xi_{2} \in R, \xi_{1} \neq \xi_{2}$, where L_{j} are positive constants. The quantities $c_{i}, a_{i j}$, and $b_{i j}$ may be considered as intervalized as follows:
\[

$$
\begin{align*}
& \boldsymbol{C}_{I}:=[\underline{\boldsymbol{C}}, \overline{\boldsymbol{C}}]=\left\{\boldsymbol{C}=\operatorname{diag}\left(c_{i}\right): \underline{\boldsymbol{C}} \leqslant \boldsymbol{C} \leqslant \overline{\boldsymbol{C}}, \text { i.e., } \underline{c}_{i} \leqslant c_{i} \leqslant \bar{c}_{i}, i=1,2, \ldots, n\right\}, \\
& \boldsymbol{A}_{I}:=[\underline{\boldsymbol{A}}, \overline{\boldsymbol{A}}]=\left\{\boldsymbol{A}=\left(a_{i j}\right)_{n \times n}: \underline{\boldsymbol{A}} \leqslant \boldsymbol{A} \leqslant \overline{\boldsymbol{A}}, \text { i.e., } \underline{a}_{i j} \leqslant a_{i j} \leqslant \bar{a}_{i j}, i, j=1,2, \ldots, n\right\}, \tag{3}\\
& \boldsymbol{B}_{I}:=[\underline{\boldsymbol{B}}, \overline{\boldsymbol{B}}]=\left\{\boldsymbol{B}=\left(b_{i j}\right)_{n \times n}: \underline{\boldsymbol{B}} \leqslant \boldsymbol{B} \leqslant \overline{\boldsymbol{B}}, \text { i.e., } \underline{b}_{i j} \leqslant b_{i j} \leqslant \bar{b}_{i j}, i, j=1,2, \ldots, n\right\} .
\end{align*}
$$
\]

Definition 1. The system given by (1) with the parameter ranges defined by (3) is globally robust stable if the unique equilibrium point $\boldsymbol{x}^{*}=\left[x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right]^{\mathrm{T}}$ of the system is globally asymptotically stable for all $\boldsymbol{C} \in \boldsymbol{C}_{I}, \boldsymbol{A} \in \boldsymbol{A}_{I}, \boldsymbol{B} \in \mathbf{B}_{I}$.
In the following, if \boldsymbol{H} is a matrix, its norm $\|\boldsymbol{H}\|_{2}$ is defined as

$$
\|\boldsymbol{H}\|_{2}=\sup \{\|\boldsymbol{H} \boldsymbol{x}\|:\|\boldsymbol{x}\|=1\}=\sqrt{\lambda_{\max }\left(\boldsymbol{H}^{\mathrm{T}} \boldsymbol{H}\right)}
$$

where $\lambda_{\max }\left(\boldsymbol{H}^{\mathrm{T}} \boldsymbol{H}\right)$ denotes the maximum eigenvalue of $\boldsymbol{H}^{\mathrm{T}} \boldsymbol{H}$. In [9] it has been shown that

$$
\begin{equation*}
\|\boldsymbol{B}\|_{2} \leqslant\left(\left\|\boldsymbol{B}^{*}\right\|_{2}+\left\|\boldsymbol{B}_{*}\right\|_{2}\right) \tag{4}
\end{equation*}
$$

where $\boldsymbol{B}^{*}=(\overline{\boldsymbol{B}}+\underline{\boldsymbol{B}}) / 2, \boldsymbol{B}_{*}=(\overline{\boldsymbol{B}}-\underline{\boldsymbol{B}}) / 2$. The estimate (4), which is a modified and corrected version of the estimate given in [1], has been utilized in some recently reported global robust stability criteria (for example, [9-11,32,42]). More recently [37] an alternative estimate in the form

$$
\begin{equation*}
\|\boldsymbol{B}\|_{2} \leqslant\|\boldsymbol{Q}\|_{2} \tag{5}
\end{equation*}
$$

has been presented, where $\boldsymbol{Q}=\left(q_{i j}\right)_{n \times n}$ is defined by

$$
\begin{equation*}
q_{i j}=\max \left\{\left|\underline{b}_{i j}\right|,\left|\overline{b_{i j}}\right|\right\} \quad i, j=1,2, \ldots, n . \tag{6}
\end{equation*}
$$

As shown in [37], in some cases (5) may be a better estimate than (4).
The purpose of this paper is to show that an estimate of the upper limit of $\|\boldsymbol{B}\|_{2}$ may be found in some cases, which would be an improvement over both (4) and (5). Some observations concerning the determination of the optimum (i.e., least conservative) upper limit of $\|\boldsymbol{B}\|_{2}$ are presented.

2. Possible new estimates of upper limit of $\|B\|_{2}$

Consider a specific example [37] of a second-order DNN with

$$
\overline{\boldsymbol{A}}=\left[\begin{array}{cc}
-1 & 0.5 \tag{7}\\
0.5 & -1
\end{array}\right], \quad \underline{\boldsymbol{A}}=\left[\begin{array}{cc}
-2 & 0.5 \\
0.5 & -2
\end{array}\right], \quad \overline{\boldsymbol{B}}=\left[\begin{array}{cc}
2 & 0 \\
-1 & -1
\end{array}\right], \quad \underline{\boldsymbol{B}}=\left[\begin{array}{cc}
1 & -1 \\
-2 & -3
\end{array}\right], \quad \overline{\boldsymbol{C}}=\boldsymbol{C}=\left[\begin{array}{cc}
8.5 & 0 \\
0 & 8.5
\end{array}\right], \quad L_{1}=L_{2}=1 .
$$

In this example, one has $\left(\left\|\boldsymbol{B}^{*}\right\|_{2}+\left\|\boldsymbol{B}_{*}\right\|_{2}\right)=3.884$ and $\|\boldsymbol{Q}\|_{2}=4.131$ and consequently (4) and (5) yield

$$
\begin{equation*}
\|\boldsymbol{B}\|_{2} \leqslant 3.884 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\boldsymbol{B}\|_{2} \leqslant 4.131 \tag{9}
\end{equation*}
$$

respectively. Thus, in this example the criterion (4) yields a less conservative estimate of the upper limit of $\|\boldsymbol{B}\|_{2}$ than the criterion (5). On the other hand, in the example given by [37]

$$
\overline{\boldsymbol{A}}=\left[\begin{array}{cc}
-1 & 0.5 \tag{10}\\
0.5 & -1
\end{array}\right], \quad \underline{\boldsymbol{A}}=\left[\begin{array}{cc}
-2 & 0.5 \\
0.5 & -2
\end{array}\right], \quad \overline{\boldsymbol{B}}=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right], \quad \underline{\boldsymbol{B}}=\left[\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right], \quad \overline{\boldsymbol{C}}=\underline{\boldsymbol{C}}=\left[\begin{array}{cc}
4.5 & 0 \\
0 & 4.5
\end{array}\right], \quad L_{1}=L_{2}=1
$$

https://daneshyari.com/en/article/1893297

Download Persian Version:
https://daneshyari.com/article/1893297

Daneshyari.com

[^0]: * Tel.: +90 312586 8391; fax: +90 3125868091.

 E-mail addresses: vsingh11@rediffmail.com, vimal_singh@atilim.edu.tr

