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h i g h l i g h t s

• A new way for calculating the bipartivity of networks is introduced.
• The bipartivity of the European Low Cost Carriers and Traditional airlines shows significant differences.
• Alliances and airline mergers decrease the bipartivity of the corresponding networks.
• Bipartivity is strongly correlated with the transportation efficiency of the European airlines.
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a b s t r a c t

The analysis of the structural organization of the interaction network of a complex system is central to
understand its functioning. Here, we focus on the analysis of the bipartivity of graphs. We first introduce
a mathematical approach to quantify bipartivity and show its implementation in general and random
graphs. Then, we tackle the analysis of the transportation networks of European airlines from the point
of view of their bipartivity and observe significant differences between traditional and low cost carriers.
Bipartivity shows also that alliances and major mergers of traditional airlines provide a way to reduce
bipartivity which, in its turn, is closely related to an increase of the transportation efficiency.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental characteristic of complex systems is that, in
general, they are networked. Thus, complex networks, which
represent the skeleton of such complex systems, are ubiquitous
in many real-world scenarios, ranging from the biomolecular –
those representing gene transcription, protein interactions, and
metabolic reactions – to the social and infrastructural organization
of modern society [1]. Mathematically speaking, these networks
are graphs with the nodes representing the entities of the system
and the edges representing the ‘‘relations’’ among those entities.
From a structuralist point view of nature it could be claimed that
a large proportion of the properties of these complex systems is
determined by the structure of these networks. The question about
what do we mean by ‘‘the structure’’ of these networks is a tricky
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one. This situation is reminiscent of Edgar Allan Poe’s response
about what is the structure of a strange ship: ‘‘What she is not, I can
easily perceive—what she is I fear it is impossible to say’’ [2]. Then,
the pragmatic approach used in network theory and beyond is to
consider structural invariants which characterize some portions of
this structurewhich in global terms scape to our formal definitions.
That is the reason why we have such a large amount of structural
invariants, i.e., numbers that characterize some properties of the
network independently of the labeling of nodes and edges [3]. Such
invariants include the average path length, clustering coefficients,
densities, assortativity coefficients, and many more (see [1,3] for
non-exhaustive lists).

The concept of network bipartivity is one that has given rise to
some structural invariants to characterize how much bipartivity a
network has. Bipartivity has long been studied in graph theory as a
black-and-white concept. That is, just by considering that a graph
is or is not bipartite. However, in the noughties there were three
papers that attempted to characterize howmuch bipartivity a non-
bipartite graph has. The pioneering work of Holme et al. proposed
the first of such measures in 2003 by using computational
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methods [4]. In 2005 Estrada and Rodríguez-Velázquez applied
spectral graph theory to develop a mathematical characterization
of graph bipartivity [5]. The third work, published by Pisanski and
Randić, uses a characterization of network cyclicity to account for
bipartivity [6]. In particular the bipartivity index developed by
Estrada and Rodríguez-Velázquez has found a different number
of applications to network problems ranging from the analysis of
fullerene stability to the structure of food webs (see for instance
[7–10]). Although this index is mathematically appealing – it is
based on well defined matrix functions of the adjacency matrix
of a graph – it has some drawbacks. The most important one is
that it is bounded between 0.5 and 1.0, which means that it has
a very narrow range of values for the analysis of networks. Also
importantly, it is based on two different kinds of matrix functions
– the exponential and the hyperbolic cosine – which make its
calculation computationally complicated from the point of view of
using numerical methods for their calculations.

Here we propose a newmathematical approach to quantify the
bipartivity of a network by considering a single matrix function—
the exponential. This new index is ranged between 0 and 1. We
show a few mathematical properties of this index for general
networks as well as for random graphs. We then embarked on
the study of the airline transportation networks in Europe to
see how the different degrees of bipartivity affect their global
efficiency in terms of the number of passengers transported and
thenumber of hours flown.We show that the newbipartivity index
accounts very well for the main characteristics of these European
airline networks and allow us to understand the main structural
differences between traditional and low-cost carriers operating in
Europe.

2. Graph theoretical preliminaries

Here we present some definitions, notations, and properties
which will be used in this work (see [1,3]). A graph G = (V , E)
is defined by a set of n nodes (vertices) V and a set of m edges
E = {(u, v)|u, v ∈ V } between the nodes. An edge is said to be
incident to a vertex u if there exists a node v ≠ u such that either
(u, v) ∈ E or (v, u) ∈ E. The graph is said to be undirected if the
edges are formed by unordered pairs of vertices. Awalk of length k
in G is a set of nodes i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k,
(il, il+1) ∈ E. A closed walk is a walk for which i1 = ik+1. A path is a
walk with no repeated nodes. A graph is connected if there is a path
connecting every pair of nodes. A graph with unweighted edges,
no self-loops (edges from a node to itself), and nomultiple edges is
said to be simple. Throughout this work, we will always consider
undirected, simple, and connected networks. In this setting the
matrix A = (auv), called the adjacency matrix of the graph, has
entries

auv =


1 if (u, v) ∈ E
0 otherwise ∀u, v ∈ V ,

and, in the particular case of an undirected network as the ones
studied here, the adjacencymatrix of the graph is symmetric, auv =

avu, and thus its eigenvalues are real. In the following we label the
eigenvalues of A in non-increasing order: λ1 ≥ λ2 ≥ · · · ≥ λn. The
degree of a node ki is the number of edges incident to that node.
Since A is a real-valued, symmetric matrix, we can decompose A
into A = QΛQ T where Λ is a diagonal matrix containing the
eigenvalues of A and Q = [q1, . . . , qn] is orthogonal, where qi is
an eigenvector associated with λi.

The network density is given by:

δ =
2m

n (n − 1)
,

where m is the number of edges. Here we will call, as usual in
network theory, average path length the average of the shortest

path distance in the graph:

l =
2

n (n − 1)


u≠v

d(u, v),

where d(u, v) is the shortest path distance between the nodes u
and v.

An important quantity for the current work is one defined
for studying communication processes in networks, which is
called communicability function [11]. In particular, the self-
communicability function, also known as the subgraph central-
ity [12] of the corresponding node, is defined as follows. Let u be a
node of G, then

Guu =

∞
k=0


Ak

uu

k!
= (exp (A))uu =

n
k=1

eλkq2
k(u).

The sum of all subgraph centralities in a network is nowadays
known as the Estrada index of a graph [13–16], which is defined
as

EE (G) =

n
u=1

(exp (A))uu = tr (exp (A)) .

By the properties of the matrix exponential and of the trace of
a matrix we can easily see that

EE (G) = tr (sinh (A)) + tr (cosh (A)) .

These functions count the total number of closed walks starting
(and ending) at nodeu, weighted in decreasing order of their length
k by a factor 1

k! ; therefore it is considering shorter closed walks
more influential than longer ones (see [11,17,18]). In particular, the
hyperbolic sine function counts the number of closed walks of odd
length in the graph and the hyperbolic cosine one counts the even-
length ones.

3. Spectral bipartivity index in graphs

There are a few characterizations of bipartite graphs in graph
theory. For instance, the following characterization is a well-
known one [19].

Lemma 1. A graph is bipartite if and only if it does not contain any
odd cycle.

We now provide a related characterization of bipartite graphs
which will be of great usefulness in this work.

Theorem 2. A graph is bipartite if and only if tr sinh (A) = 0.

Proof. Let us consider the Taylor series expansion of tr sinh (A)

tr sinh (A) = trA +
trA3

3!
+ · · · =

∞
k=0

tr

A2k+1


(2k + 1)!

.

We know that tr

A2k+1


counts the number of closed walks

of length 2k + 1 in the graph. Every closed walk of odd length
necessarily involves an odd cycle. Then, because in a bipartite
graph there are no odd cycles, tr


A2k+1


= 0 for all k, which proves

the above result. �

Let us call frustrated closed walk a closed walk which involves
any odd cycle in the network. Similarly, a non-frustrated closed
walk is the one which does not involve any odd cycle. Let us
now consider a normalized measure of the difference between the
number of non-frustrated and frustrated walks:

bs =
WN

− W F

WN + W F
. (1)

The use of the term frustrated to designate closed walks
involving any odd cycle in the network comes from its use in spin
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