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h i g h l i g h t s

• We study systemic risk on a two-layer multiplex network with asymmetric coupling strength between layers.
• Systemic risk is underestimated or overestimated by the aggregated representation of a multi-layered system.
• Sharp phase transitions in the cascade size exist depending on the coupling strength.
• We derive mathematical approximations for the phase transitions and we confirm our findings by simulations.
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a b s t r a c t

We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the
coupling strength between the layers. Based on an analytical branching process approximation, we
calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results
are compared with the case of a single layer network that is an aggregated representation of the two
layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if
the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk
is increased because of the mutual amplification of cascades in the two layers. We even observe sharp
phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can
be applied to a scenario where firms decide whether they want to split their business into a less risky
core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of
systemic risk, which is underestimated in an aggregated approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cascading failures in complex systems can be understood as
a process by which the initial failure of a small set of individual
components leads to the failure a significant fraction of the
system’s components. This is due to interconnections between
the different components of the system. Such a phenomenon can
occur in physical systems such as power grids (e.g. [1–3]), but
also in complex organizations like interbank systems (e.g. [4–7]). A
general framework to study such cascading failures in networked
systems was developed in [8], and extended recently to work in
more general topologies in [9].

In many situations, cascading failures can be influenced by
the combination of different types of interactions between the
individual components of the system. This is the case in interbank
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systems, where banks are exposed to each other via different
types of financial obligations (loans, derivative contracts, etc.) (e.g.
[10,11]). The bankruptcy of a bank can thus cascade to other banks
in non-standard ways. Another example is firms diversifying their
activities across different business units, each of which is exposed
to cascade risk in its own field of activity.

An important question we wish to investigate in this article is
how diversification across different types of interactions can affect
the risk of cascading failures. For that purpose, we study the case of
a firm that diversifies its activities across a core-business unit and
a subsidiary-business unit. Each business unit is exposed to other
firms’ business units in the same sector of business activity (either
core or subsidiary). This means that a business unit can fail (i.e. go
bankrupt) as a result of a cascade of failures (i.e. bankruptcies) in
the same sector of business activity.

The question of the structuring of a firm into sub-units has been
studied from a different angle in the financial economics literature
(e.g. [12,13]) and often focuses on the efficiency of the allocation
of its resources across different industries. Another question that
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Fig. 1. Illustration of a system with asymmetrically coupled layers. A failure (or
bankruptcy) on the Core Business layer implies a failure on the Subsidiary Business
layer. This coupling is illustrated by an inter-layer dependency link (red arrow).
On the other hand, a failure on the Subsidiary Business layer only decreases a
node’s failure threshold on the Core Business layer. This coupling is illustrated using
dashed black arrows. The intra-layer links represent business relations or other
forms of interactions due to normal business. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

has received some attention is that of whether a firm can diversify
the risk of its income streams by operating in different business
areas. Namely, Levy and Sarnat [14], Smith and Schreiner [15] and
Amihud and Lev [16] studied how conglomerates can diversify the
risk associated with their revenue streams from the perspective of
portfolio theory.

Here, we use a complex networks approach and we view
the system of firm activities as an interconnected multi-layered
network (see [17–20]). The distinct layers of this network contain
individual networks defined by a particular type of interactions
according to a given business activity, while the inter-connections
between layers allow for cross-layer interactions. In this setting
we develop a model where failures (i.e. bankruptcies) on two
different network layers affect firms asymmetrically: The first
layer represents exposures between the firms in the core business
while the second layer represents exposures between firms in
the subsidiary business. Failure (i.e. bankruptcy) of a firm’s core
business unit implies failure of its subsidiary business unit,
whereas failure of a firm’s subsidiary business unit only causes a
shock to the firm’s resistance threshold in its core business unit
(see Fig. 1 for an illustration). We find that when the coupling
strength from the core to the subsidiary layer is varied only slightly,
there is a sharp transition between a safe regime, where there
is no cascade of failures, and a catastrophic regime, where there
is a full cascade of failures. Moreover, when comparing the two-
layer network to the single-layer network formed by aggregating
the two layers, we find that cascades can be larger on the two-
layer network than on the aggregated one. On the other hand, by
varying the strength of the feedback between the two layers, we
identify the existence of a regime where the two-layer network
is safer than the aggregated one and another regime where the
reverse holds. This points to the critical importance of the coupling
of the layers when structuring a firm into different business units.
Also, dealing with aggregated network data that ignores the fine
structure of the coupling between different layers can lead to
significant underestimation or overestimation of cascade risk.

The article is structured as follows. In Section 2, we describe
the two-layer cascade model. In Section 3, we derive a branching
process approximation as an approximation for large networks
and use it to analyze the aforementioned phenomena. These
phenomena are presented in Section 4 where we compare

our analytical results with simulations and analyze further the
observed phase transitions. In Section 5, we conclude and
interpret the consequences of our theoretical investigations for the
application to networks of firms that might decide about merging
their core and their subsidiary business.

2. Model

We first consider a finite model with N firms. Each firm can be
represented by a node i present on each of two different layers:
layer 0 (the core-business layer) and layer 1 (the subsidiary-business
layer). Each layer l ∈ {0, 1} has a topology represented by an
adjacency matrix Gl. On each layer l, node i can be in one of two
states sil ∈ {0, 1}, healthy (sil = 0) or failed (sil = 1). si0 = 1
represents the bankruptcy of firm i’s core-business unit, whereas
si1 = 1 represents the bankruptcy of its subsidiary-business unit.
This state is determined by two other variables: a node’s fragility
on a given layer φi

l , which accumulates the load a node carries,
and its threshold θ i

l on that layer, which determines the amount of
load it can carrywithout failing.Whenever the fragility exceeds the
threshold φi

l ≥ θ i
l , the node fails on that layer and cannot recover

at a later point in time.
On each layer, we assume that a cascade of failures spreads

according to the threshold failuremechanism ofWatts [21]. Thus a
node fails if a sufficient fraction of its neighbors have failed. The
fragility of a node i of degree kil on layer l (i.e. a node with kil
neighbors on layer l) can be expressed as

φi
l(k

i
l) =

1
kil
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sjl =
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l
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(1)

where nbl(i) is the set of nodes in i’s neighborhood on layer l
and ni

l is the number of failed neighbors on layer l. This failure
mechanism is useful to model a firm diversifying its exposure to
failure risk across neighbors: the more neighbors a node has, the
less it is exposed to the failure of a single neighbor. A cascade
of failures thus starts with an initial fraction of failed nodes.
These failures can then spread to their neighbors in discrete time
steps. The load φi

l of a node i is thus updated at each time
step t . This model has been studied extensively on single-layer
networks, in the context of configuration model type random
graphs with a given degree distribution [22–24,7,25], and has
been adapted to financial networks of interbank lending [5,6,26].
In [9] a mesoscopic perspective is added by studying conditional
failure probabilities given the degree of node. Generalizations of
the model to weighted networks can be found in [7,27,9].

In a financial or economic setting, where the nodes are assumed
to represent firms that possess simplified versions of balance
sheets, the fragility and threshold can be expressed in terms of
the liability and capital of a firm. In this case, the fragility φ l

i of a
node i represents the loss that a firm encounters divided by its total
liability Lil in layer l. According to the Watts model, i has the same
financial obligation wi

l = Lil/k
l
i to each of its neighbors in layer l,

we therefore have
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The threshold θ l
i of a node in layer l signifies similarly the ratio

between a node’s capital buffer C i
l and its total liabilities Lil:

θ i
l =

C i
l

Lil
. (3)

Consequently, when a node i fails and its fragility exceeds its
threshold (φi

l(k
i
l) ≥ θ l

i ), equivalently its loss n
i
lw

i
l exceeds its capital
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