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h i g h l i g h t s

• We provide analytical expressions for the centrality of random walks in interconnected multilayer networks.
• Wecheck the theoretical resultswith extensiveMonte Carlo simulations of randomwalkers in different topologies, and achieve an excellent agreement.
• Our results are useful for the ranking of nodes in multi-categorical systems.
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a b s t r a c t

Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be
modeled as interconnected multilayer networks, characterizing interactions of several types simultane-
ously. It is of crucial importance in many fields, from economics to biology and from urban planning to
social sciences, to identify the most (or the less) influent nodes in a network using centrality measures.
However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper,
we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex
topologies, and extend twowell known randomwalk centralitymeasures, the randomwalk betweenness
and closeness centrality, to interconnectedmultilayer networks. For each of themeasures we provide an-
alytical expressions that completely agree with numerically results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is common practice in many studies involving networks to
assume that nodes are connected by a single type of edge that en-
capsulates all relations between them. In a myriad of applications
this assumption oversimplifies the complexity of the system, lead-
ing to inaccurate or wrong results. Examples can be found in tem-
poral networks, where neglecting time-dependence washes out
the memory of sequences of human contacts in transmission of
diseases [1], in co-authorship networks, where neglecting the ex-
istence of multiple relationships between actors might alter the
topology which may lead to misestimating crucial node’s prop-
erties [2–7] or in transportation networks where the multilayer
topology must be considered to accurately model the dynamics to
a posteriori predict congested locations [8].

Historically, the termmultiplexwas coined to indicate the pres-
ence of more than one relationship between the same actors of a
social network [9]. This type of network iswell understood in terms
of ‘‘coloring’’ (or labeling) the edges corresponding to interactions
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of different nature. For instance, in a social network the same in-
dividual might have connections to other individuals based on fi-
nancial interests (e.g., color red) and connections with the same or
different individuals based on friendship (e.g., color blue). In other
real-world systems, like the transportation network of a city, the
same geographical position can be part, for instance, of the net-
work of subway or the network of bus routes, simultaneously. In
this specific case, an edge-colored graphwould not capture the full
structure of the network, since information about the cost tomove
from the subway network to the bus route is missing. This cost can
be economic or might account for the time required to physically
commute between the two layers. It is in this cases where an inter-
connected multilayer network provides a better representation of
the system. Fig. 2 shows an illustration of an interconnected mul-
tilayer (Fig. 2(A)) and the classical representation with an aggre-
gated network (Fig. 2(C)). It is evident that a simple projection of
the former –mathematically equivalent to sumup the correspond-
ing adjacency matrices of the individual layers – would provide a
network where the information about the relation type is lost. On
the other hand, an edge-colored graph (Fig. 2(B)) cannot account
for interconnections. For further details about the classification of
such multilayer networks we refer to [10] and references therein.
In the rest of the paper interconnectedmultilayer networks will be
referred in short as multilayer networks.
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The remainder of this paper is organized as follows. In Section 2
we briefly describe the tensorial notation, defined in [11], adopted
overall the paper. In Section 3 we capitalize on this notation to
extend some random walk centrality descriptors, well known in
the case of single layer networks, to interconnected multilayer
networks. Finally, we discuss our findings in Section 4.

2. Tensorial notation

Edge-colored graphs can be represented by a set of adjacency
matrices [12–15]. However, standard matrices, used to represent
networks, are limited in the complexity of the relationships that
they can capture, i.e., they do not represent a suitable framework in
the case ofmultilayer networks. This is the case ofmultiple types of
relationships – that can also change in time – between nodes. Such
a level of complexity can be characterized by considering tensors
and algebras of higher order [11].

A great advantage of tensor formalism developed in [11] relies
on its compactness. An adjacency tensor can be written using a
more compact notation that is very useful for the generalization of
network descriptors tomultilayer networks. In this notation, a row
vector a ∈ RN is given by a covariant vector aα (α = 1, 2, . . . ,N),
and the corresponding contravariant vector aα (i.e., its dual vector)
is a column vector in Euclidean space. A canonical vector is
assigned to each node and the corresponding interconnected
multi-layer network is represented by a mixed rank-4 adjacency
tensor.

However, in the majority of applications, it is not necessary to
performcalculations using canonical vectors and tensors explicitly.
In this cases, a classical single-layer network can be represented
by a rank-2 mixed adjacency tensor Wα

β [11], where the layer
information is disregarded. But, in general, systems may exhibit
several types of relationships between pairs of nodes and a more
general system represented as a multilayer object – in which each
type of relationship is represented within a single layer α (α =

1, 2, . . . , L) of the network – is required.1 In these cases, we use
an intra-layer adjacency tensor for the 2nd-order tensorW i

j (α) that
indicates the relationships between nodes within the same layer
α and the 2nd-order inter-layer adjacency tensor C i

j (αβ) to encode
information about relationships that incorporate multiple layers.

It has been shown that the mathematical object accounting
for the whole interconnected multilayer structure is given by
a 4th-order (i.e., rank-4) multilayer adjacency tensor M iα

jβ . This
tensor might be simply thought as a higher-order matrix with four
indices. It is the direct generalization of the adjacency matrix in
the case of single layer networks and encodes the intensity of the
relationship (which may not be symmetric) from a node i in layer
α to a node j in layer β [11].

To reduce the notational complexity in the tensorial equations
the Einstein summation convention is adopted. It is applied to
repeated indices in operations that involve tensors. For example,
we use this convention in the left-hand sides of the following
equations:

Ai
i ≡

N
i=1

Ai
i, Ai

jB
j
i ≡

N
i=1

N
j=1

Ai
jB

j
i,

Aiα
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kβ
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N
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L
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jβB

kβ
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1 To avoid confusion, in the following we refer to nodes with Latin letters and
to layers with Greek letters, allowing us to distinguish indices that correspond to
nodes from those that correspond to layers in tensorial equations.

whose right-hand sides include the summation signs explicitly.
It is straightforward to use this convention for the product of
any number of tensors of any order. In the following, we will
use the tth power of rank-4 tensors, defined by multiple tensor
multiplications:

(At)iαjβ = (A)iαj1β1
(A)

j1β1
j2β2

. . . (A)
jt−1βt−1
jβ . (1)

Repeated indices, such that one index is a subscript and the
other is a superscript, is equivalent to performa tensorial operation
known as a contraction. Moreover, one should be very careful in
performing tensorial calculations. For instance, using traditional
notation the product aibj would be a number, i.e., the product
of the components of two vectors. However, in our formulation,
the same calculation denotes a Kronecker product between two
vectors, resulting in a rank-2 tensor, i.e., a matrix.

3. Random walk centrality measures in multilayer networks

In practical applications one is often interested in assigning
a global measure of importance to each node. If the system we
deal with contains several types of relations between actors we
expect that the measures, in some way, consider the importance
obtained from the different layers. A simple choice could be to
combine the centrality of the nodes – obtained from the different
layers independently – according to some heuristic choice. This is
a viable solution when there is no interconnection between layers,
i.e., in the case of edge-colored graphs [16,17]. However, the main
drawback of this approach is that it depends on the choice of the
heuristics and thus might not evaluate the actual importance of
nodes. Our approach accounts for the higher level of complexity
of such systems without relying on external assumptions and
naturally extends the well-known centrality measures adopted for
several decades in the case of single layer networks.

A random walk is one of the simplest dynamical process
that can occur on a network, and random walks can be used to
approximate other types of diffusion processes[18,19]. Random
walks on networks [18,20,19] have attracted considerable interest
because they are both important and easy to interpret. They
have yielded important insights on a huge variety of applications
and can be studied analytically. For example, random walks
have been used to rank Web pages [21] and sports teams [22],
optimize searches [23], investigate the efficiency of network
navigation [24,25], characterize cyclic structures in networks [26],
and coarse-grain networks to highlight meso-scale features such
as community structure [27–29]. Another interesting application
of random walks is to calculate the centrality of actors in complex
networks when there is no knowledge about the full network
topology but only local information is available. In such cases,
centrality descriptors based on shortest-paths, e.g., betweenness
and closeness centrality, should be substituted by centrality
notions based on randomwalks [20,30]. In the followingwe extend
these measures to multilayer networks.

First of all,wedefine a discrete-time randomwalk, between two
individuals o and d, o → d, on a multilayer network consisting
of L layers and N nodes per layer, as a random sequence of nodes
which starts from node o in any layer and finish in node d in any
layer where each edge’s endpoints are the preceding and following
vertices in the sequence. The reasoning behind this definition is
that the different node replicas in the different layers correspond
to the same individual and so anything traveling between them is
independent on the starting and ending layer. Fig. 1 shows and
example of a random walk between two nodes in a multilayer
network where it is evident the introduction of non-trivial effects
because of the presence of inter-layer connections that affects its
navigation in the networked system [31].
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