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a b s t r a c t 

We provide sufficient conditions for the existence of two periodic solutions bifurcating from 

a zero–Hopf equilibrium for the differential system 

˙ x = y, ˙ y = z, ˙ z = a + by + cz − x 2 / 2 , 

where a, b and c are real arbitrary parameters. The regular perturbation of this differential 

system provides the normal form of the so–called triple–zero bifurcation. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction and statement of the main results 

In the paper [1] it is proved that the normal form of the 

triple–zero bifurcation can be understood as a regular per- 

turbation of the following generalized Michelson system 

˙ x = y, 

˙ y = z, 

˙ z = a + by + cz − x 2 / 2 , (1) 

where a, b and c are real arbitrary parameters. The prime de- 

notes derivative with respect to the independent variable t . 

A zero–Hopf equilibrium is an equilibrium point of a 

3–dimensional autonomous differential system, which has a 

zero eigenvalue and a pair of purely imaginary eigenvalues. 

Usually the zero–Hopf bifurcation is a two–parameter un- 

folding of a 3-dimensional autonomous differential system 

with a zero–Hopf equilibrium. The unfolding has an isolated 
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equilibrium with a zero eigenvalue and a pair of purely imag- 

inary eigenvalues if the two parameters take zero values, and 

the unfolding has different topological type of dynamics in 

the small neighborhood of this isolated equilibrium as the 

two parameters vary in a small neighborhood of the origin. 

For instance this zero–Hopf bifurcation has been studied 

in [6–9,11] , and it has been shown that some complicated 

invariant sets of the unfolding could be bifurcated from 

the isolated zero–Hopf equilibrium under some conditions. 

Hence, in some cases zero–Hopf bifurcation could imply a 

local birth of “chaos” see for instance the articles of [2–5,11] ). 

Our objective is to study analytically the periodic so- 

lutions of the zero–Hopf bifurcation for the generalized 

Michelson differential system (1) . In the previous mentioned 

papers on the zero-Hopf bifurcation they do not use averag- 

ing theory for studying such kind of bifurcation. Our goal is 

to study analytically such a bifurcation using averaging the- 

ory which will allows to provide an explicit expression of 

the dominant terms of the periodic solution bifurcating from 

the zero-Hopf equilibrium. First, in the next proposition we 

characterize when the equilibrium point of the generalized 

Michelson system (1) is a zero-Hopf equilibrium point. 
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Proposition 1. There is an one–parameter family of the gener- 

alized Michelson system (1) for which the origin of coordinates is 

a zero–Hopf equilibrium point. Namely a = 0 , b = −ω 

2 , c = 0 . 

Proposition 1 is proved in Section 2 . 

Theorem 2. Assume that in the generalized Michelson system 

(1) we have 

a = ε 2 (a 2 + ω 

4 / 2) , a 2 > 0 , b = −ω 

2 + εb 1 , ω > 0 , 

c = ε. (2) 

Then for ε � = 0 sufficiently small system (1) has two periodic 

solutions ( x i ( t , ε), y i ( t , ε), z i ( t , ε)) bifurcating from the zero–

Hopf equilibrium of Proposition 1 , namely (
ε 

V 

∗
i 

− ω R 

∗ cos (ω t) − ω 

2 
√ 

2 a 2 + ω 

4 

ω 

2 
+ O (ε 2 ) , 

εR 

∗ sin (ωt) + O (ε 2 ) , εω R 

∗ cos (ω t) + O (ε 2 ) 

)
, (3) 

where 

R 

∗ = 2 

√ 

a 2 ω, 

V 

∗
i = ω 

2 ((−1) i 
√ 

2 a 2 + ω 

4 − ω 

2 ) for i = 1 , 2 . 

Moreover, these two periodic solutions are unstable. 

Theorem 2 improves and extends the result of [10] where 

only one periodic solution was detected bifurcating from the 

zero–Hopf equilibrium for a subsystem of system (1) . 

2. Proof of Proposition 1 and Theorem 2 

Proof of Proposition 1. System (1) possesses the equilib- 

rium points ( x , y, z) = (±√ 

2 a , 0 , 0) if a ≥ 0. The Jacobian ma- 

trix of system (1) at the equilibrium point (±√ 

2 a , 0 , 0) is ⎛ 

⎝ 

0 1 0 

0 0 1 

±√ 

2 a b c 

⎞ 

⎠ . 

Its characteristic polynomial is p(λ) = −λ3 + cλ2 + bλ ±√ 

2 a . In order to study the zero-Hopf bifurcation we force 

that p(λ) = −(λ − ε)(λ2 + ω 

2 ) . p(λ) + (λ − ε)(λ2 + ω 

2 ) = 

0 . This occurs if and only if the coefficients of this equa- 

tion are ±√ 

2 a − εω 

2 = 0 , b + ω 

2 = 0 , c − ε = 0 . We obtain 

a = ε 2 ω 
4 

2 , b = −ω 

2 , c = ε. This completes the proof of the 

proposition. �

The differential system (1) satisfying (2) has two equilib- 

ria, namely 

p ± = (±ε 
√ 

2 a 2 + ω 

4 , 0 , 0) . 

First we study the periodic solutions bifurcating from the 

zero–Hopf equilibrium near the equilibrium p −. 

For applying the averaging theory described in the 

Appendix to system (1) satisfying (2) we translate the equi- 

librium point p − to the origin by doing the change of vari- 

ables 

(x, y, z) = (x 1 − ε 
√ 

2 a 2 + ω 

4 , y 1 , z 1 ) . (4) 

The differential system in the new variables ( x 1 , y 1 , z 1 ) is 

˙ x 1 = y 1 , 

˙ y 1 = z 1 , 

˙ z 1 = −ω 

2 y 1 −
x 2 1 

2 

+ ε 
(

b 1 y 1 + z 1 + x 1 

√ 

2 a 2 + ω 

4 

)
. (5) 

We need to write the linear part of system (5) at the equilib- 

rium point (0, 0, 0) in its real Jordan normal form, i.e. into the 

form ⎛ 

⎝ 

0 −ω 0 

ω 0 0 

0 0 0 

⎞ 

⎠ , 

in order to facilitate the application of the averaging theory, 

given by Theorem 3 , for computing the zero–Hopf bifurca- 

tion. Then, doing the change of variables ( x 1 , y 1 , z 1 ) → ( X, Y, 

Z ) given by 

⎛ 

⎝ 

X 

Y 

Z 

⎞ 

⎠ = 

⎛ 

⎜ ⎜ ⎝ 

0 0 

1 

ω 

0 1 0 

ω 

2 0 1 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎝ 

x 1 

y 1 

z 1 

⎞ 

⎠ , 

the differential system (5) having its linear part in its real Jor- 

dan form is 

˙ X = −2 Y ω 

6 + (Z − ωX ) 2 

2 ω 

5 

+ ε 

(
X + 

b 1 Y 

ω 

+ 

1 

ω 

3 
(Z − X ω) 

√ 

2 a 2 + ω 

4 

)
, 

˙ Y = ωX, 

˙ Z = − (Z − ωX ) 2 

2 ω 

4 

+ ε 
(
ω X + b 1 Y + 

1 

ω 

2 
(Z − ω X ) 

√ 

2 a 2 + ω 

4 

)
. (6) 

Consider the cylindrical coordinates ( r, θ , Z ) defined by X = 

r cos θ, Y = r sin θ, Z = Z then the differential system (6) 

becomes 

˙ r = −cos θ (Z − ωr cos θ ) 2 

2 ω 

5 

+ ε 

[
r cos θ (ω cos θ + b 1 sin θ ) 

ω 

− 1 

ω 

3 
cos θ (Z − ωr cos θ ) 

√ 

2 a 2 + ω 

4 

]
, 

˙ θ = 

2 rω 

6 + (Z − rω cos θ ) 2 sin θ

2 rω 

5 

− ε 

[
sin θ (ω cos θ + b 1 sin θ ) 

ω 

−
√ 

2 a 2 + ω 

4 

ω 

3 

[
Z sin θ

r 
− ω sin (2 θ ) 

2 

]]
, 

˙ Z = − (Z − rω cos θ ) 2 

2 ω 

4 
+ ε 

[
ωr cos θ + b 1 r sin θ

+ 

1 

ω 

2 
(Z − ωr cos θ ) 

√ 

2 a 2 + ω 

4 

]
. (7) 
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