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a b s t r a c t

Wepresent some results and conjectures on a generalization to the noncommutative setup
of the Brouwer fixed-point theorem from the Borsuk–Ulam theorem perspective.
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1. Introduction

The Borsuk–Ulam theorem [1], a fundamental theorem of topology, is often formulated in one of three equivalent
versions, that regard continuous maps whose either domain, or codomain, are spheres.

Theorem 1.1. For any n ∈ N let σ : x → −x be the antipodal involution of Sn. Then:

(0) If F : Sn → Rn is continuous, then there exists x ∈ Sn, such that F(x) = F(σ (x)).
(i) There is no continuous map f : Sn → Sn−1, such that f ◦ σ = σ ◦ f .
(ii) There is no continuous map g : Bn

→ Sn−1, such that g ◦ σ(x) = σ ◦ g(x) for all x ∈ ∂Bn
= Sn−1.

The statements (0), (i) and (ii) are equivalent. �

Here Sn is the unit sphere in Rn+1 and Bn is the unit ball in Rn, but homeomorphic spaces work as well. The antipodal
involution σ : x → −x generates a free action of the group Z2 and we call Z2-equivariant those maps that commute with σ .

The Borsuk–Ulam theorem has a large variety of proofs, nowadays usually employing the degree of amap (the case n = 1
is easily seen by the intermediate value theorem). Here we explain the equivalence of (0) and (i) in Theorem 1.1. Indeed, the
logical negation of (0) would provide a map given by

f (x) :=
F(x) − F(−x)

∥F(x) − F(−x)∥
, (1.1)

contradicting (i). Conversely, f viewed as amap intoRn wouldprovide a counterexample to Theorem1.1(0). Instead the proof
of the equivalence of (i) and (ii) will be a special instance of the proof we shall give of the more general Proposition 2.1.

The Borsuk–Ulam theorem has lot of applications to differential equations, combinatorics (e.g. partitioning, necklace
division), Nash equilibria, and others, see e.g. [2].

The well known equivalent theorems are the Lusternik-Schnirelmann theorem (that at least one among n + 1 open or
closed sets covering Sn contains a pair of antipodal points), and combinatorial Tucker’s lemma and Fan’s lemma [3].
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There is also plentiful of corollaries. Some of them are ‘‘fun facts’’, e.g. the case n = 2 is often illustrated by saying that at
any moment there is always a pair of antipodal points on the Earth’s surface with equal temperature and pressure. But also,
that squashing (with folding admitted) a balloon onto the floor there always is a pair of antipodal points one on the top of
the other.

A famous corollary known asHam Sandwich theorem (sometimes named Yolk, white and the shell of an egg theorem) states
that for any compact sets V1, . . . , Vn in Rn we can always find a hyperplane dividing each of them in two subsets of equal
volume. Another impressive implication is that no subset ofRn is homeomorphic to Sn. Also the famous Brouwer fixed-point
theorem, which can be formulated in two equivalent versions, is a corollary.

Theorem 1.2. (I) A continuous map from the ball Bn to itself has a fixed point.
(II) There is no continuous map g : Bn

→ Sn−1 that is the identity on the boundary ∂Bn
= Sn−1.

The statements (I) and (II) are equivalent and are corollary of Theorem 1.1(ii). �

Proof. We show the equivalence of (I) and (II), by showing the equivalence of their logical negations.
If there is g : Bn

→ Sn−1 such that g|Sn−1 = id, then, σ ◦ g would have no fixed point, which shows (I)⇒(II).
Next, assume there exists h : Bn

→ Bn such that h(x) ≠ x, ∀x ∈ Bn. Then g(x), defined as the intersection point of the
half-line passing from h(x) through xwith ∂Bn

= Sn−1, would define a continuous map g : Bn
→ Sn−1 such that g|Sn−1 = id,

which shows (II)⇒(I).
Finally note that g as above is in particular Z2 equivariant on Sn−1, which shows indirectly that (II) (and thus also (I)) is

a corollary of Theorem 1.1(ii). �

This theorem can in turn be exemplified for n = 2 by recognizing that, say on a map of Lazio, placed on the table of the
lecture hall at Villa Mondragone, there must be some point lying directly over the point that it represents. Instead the case
n = 3 is usually illustrated by stirring a cup of coffee.

The Brouwer fixed-point theorem has lot of important applications too, and is also known to be equiva-
lent to Knaster–Kuratowski–Mazurkiewicz lemma (for coverings), or to combinatorial Sperner’s lemma (with a Fair
Division result following).

2. Generalizations

There have been numerous generalizations and strengthenings of the Borsuk–Ulam theorem, see e.g. the comprehensive
survey [4], with almost 500 references before 1985. For some more recent generalizations regarding the dimension of the
coincidence set of the maps f or g for more general manifolds, or for homology spheres, and equivariance under other
groups see e.g. [5] and [6], and references therein. Herewe shall briefly present few generalizations, whose noncommutative
analogues could be most accessible, in our opinion.

2.1. Going beyond spheres

The version (0) of the Borsuk–Ulam Theorem 1.1 employs a linear structure, and is not clear how it generalizes to spaces
more general than spheres. Instead the versions (i) and (ii) can indeed be generalized as follows.

For that view Sn as the non reduced suspensionΣSn−1 of Sn−1, i.e. the quotient of [0, 1]×Sn−1 by the equivalence relation
RΣ generated by

(0, x) ∼ (0, x′), (1, x) ∼ (1, x′). (2.2)

In this homeomorphic realization the Z2-action becomes

(t, x) → (1 − t, −x). (2.3)

Furthermore notice that the ball Bn is homeomorphic to the cone Γ Sn−1 of Sn−1, i.e. the quotient of [0, 1
2 ] × Sn−1 by the

equivalence relation RΓ generated by

(0, x) ∼ (0, x′). (2.4)

Proposition 2.1. Let X be a compact space X of finite covering dimension with a free Z2-action given by an involution σ .

(i) There is no Z2-equivariant continuous map f : ΣX → X, where the Z2-action on ΣX is given by the involution

(t, x) → (1 − t, σ (x)), (2.5)

(ii) There is no continuous map g : Γ X → X that is Z2-equivariant on ∂(Γ X) = X.

The conditions (i) and (ii) are equivalent. �
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