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a  b  s  t  r  a  c  t

Basic  research  on neurocognitive  aging  has traditionally  adopted  a reductionist  approach  in  the  search  for
the basis  of  cognitive  preservation  versus  decline.  However,  increasing  evidence  suggests  that  a  network
level  understanding  of the  brain  can  provide  additional  novel  insight  into  the  structural  and  functional
organization  from  which  complex  behavior  and  dysfunction  emerge.  Using  graph  theory  as  a mathemat-
ical  framework  to  characterize  neural  networks,  recent  data  suggest  that  alterations  in structural  and
functional networks  may  contribute  to individual  differences  in  cognitive  phenotypes  in  advanced  aging.
This paper  reviews  literature  that  defines  network  changes  in  healthy  and  pathological  aging  phenotypes,
while  highlighting  the  substantial  overlap  in  key features  and  patterns  observed  across  aging  phenotypes.
Consistent  with current  efforts  in this  area,  here  we  outline  one  analytic  strategy  that  attempts  to  quan-
tify  graph  theory  metrics  more  precisely,  with  the  goal  of improving  diagnostic  sensitivity  and  predictive
accuracy  for  differential  trajectories  in neurocognitive  aging.  Ultimately,  such  an  approach  may  yield
useful  measures  for gauging  the efficacy  of potential  preventative  interventions  and  disease  modifying
treatments  early  in  the  course  of  aging.
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1. Introduction

Dramatic increases in life expectancy over the last century have
led to an escalating aging population. The potential impact of this
demographic trend is tremendous not only in terms of the finan-
cial burden to society but also the devastating personal toll for
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afflicted individuals and their caregivers. Given the urgency of the
issue, major efforts are underway to advance a more comprehen-
sive neurobiological account of neurocognitive aging. A critical, and
yet unrealized goal, has been to differentiate indicators of ‘normal’
aging from those that signal pathological processes, and ultimately,
to identify the mechanisms that support optimal cognitive health.

It seems clear on the basis of available evidence that no single
neurobiological abnormality or defect fully accounts for age-related
cognitive impairment, and instead, that the interaction among
causative factors gives rise to a multifaceted etiology. Neverthe-
less, research in this area has traditionally adopted a reductionist
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approach that, while illuminating critical neurobiological signa-
tures (see Fletcher and Rapp, 2013; Lister and Barnes, 2009 for
reviews), presents an oversimplification of the aging process itself
and risks obscuring the synergistic interactions across multiple
levels of analysis that are collectively responsible for cognitive out-
comes. Indeed, it is plausible that profiles of age-related decline in
cognitive function simply are not traceable to a narrow cell bio-
logical account. An alternate view is that the diversity of cognitive
aging phenotypes is more appropriately conceived as an emergent
property of the interactions among neural networks involving mul-
tiple brain regions and information processing capacities (Menon,
2011). Leveraging advances in neuroimaging technology, here we
suggest that the field is poised to accelerate an integrative network
science of brain and cognitive aging.

An important element of an integrative systems approach in this
area is to describe the dynamical relationships between structural
and functional networks and how they change as a function of age,
health, and disease (Bassett and Bullmore, 2009). An initial step is
to establish whether age-related network alterations are coupled
with the maintenance or decline of cognitive function, suggesting
that a network level description might be useful in tracking and
predicting differential trajectories of neurocognitive aging. Vali-
dation hinges on evidence that aging is associated with variability
in structural and functional connectivity that generates divergent
neurocognitive outcomes. The purpose of this paper is twofold: (1)
to briefly review current literature using graph theory to charac-
terize patterns of functional and structural connectivity in healthy
and diseased aging, and (2) to propose a conceptual framework that
quantifies graph theory measures as a foundation for better pre-
diction of aging trajectories. Thus, this mini-review is not intended
to be a formal “proof of concept” in testing specific hypotheses,
but instead to provide an introductory resource for scientific stake-
holders across a range of interests, from neural circuit dynamics to
the psychology of aging, for moving forward toward an integrated
account.

2. Applying graph theory to whole brain networks

Networks of all types and sizes follow similar organizing prin-
ciples that can be characterized using graph theory (Fig. 1).
The application of graph theory in neuroimaging studies has

advanced significant progress in mapping the connectivity of
structural (SC) and functional (FC) brain networks that sup-
port cognitive function (Sporns, 2011). The basic elements of a
graph (nodes) represent brain regions or voxels, whereas the
connections between nodes (edges) represent their statistical asso-
ciations in time or space. In this scheme, FC graphs signify the
degree of coordinated activity in different brain areas under either
resting-state (RS) or stimulus/task-induced conditions, measured
by functional magnetic resonance imaging (fMRI) or electroen-
cephalography/magnetoencephalography (EEG/MEG; Fig. 2 right;
Sporns, 2011). Connectivity in this case refers to shared functional
attributes, independent of assumptions about the anatomical rela-
tionships that directly or indirectly give rise to such associations
(Honey et al., 2009). SC graphs, by comparison, represent either
white matter connections between brain regions, probabilistically
derived by diffusion tensor imaging (DTI), or associations between
brains areas for morphometric parameters such as cortical thick-
ness or volumes, calculated from structural MRI  (Fig. 2 left; Sporns,
2011). An overarching goal in modeling these networks is to deter-
mine the nature of the SC–FC relationship and how these network
dynamics map  onto cognition and behavior. Graph theory may
provide new insight into understanding SC and FC network organi-
zation throughout the course of aging and how these networks are
disrupted in neuropsychiatric and degenerative diseases. However,
there are several methodological issues to consider when inter-
preting graph theory studies that can affect the results, including
choice of parcellation scheme, reliability of FC and SC networks
across subjects and sessions, and control of extraneous noise, as
described below.

2.1. Considerations in interpreting graph theory studies

A crucial step in graph theory applications involves selecting
the method and spatial resolution for parcellating the brain into
nodes and edges (Behrens and Sporns, 2012; Wig  et al., 2011).
Studies have varied in their approach, from using independently
derived anatomical templates (e.g. Gong et al., 2009), to randomly
dividing the brain into equally sized regions (e.g. Hagmann et al.,
2008), to deriving nodes on the basis of similarities in FC or SC pro-
files across subjects (e.g.’s Cohen et al., 2008; Johansen-Berg et al.,
2004). The choice of methodology is inherently linked to the spatial

Fig. 1. Simple concepts in graph theory. A network consists of nodes, the basic elements of a system (depicted as circles), and the relationships between nodes, referred to as
edges  (all lines connecting circles). Once nodes and edges are defined, graph theory measures can be applied which characterize three basic features of a system: segregation,
integration,  and influence (Rubinov and Sporns, 2010). Measures of segregation describe the degree of interconnectedness among nodes. Clustering coefficient, for example,
measures the degree of segregation of a network; in this example clustering for an individual node is high if that node’s neighbors are also connected (e.g., node 1 shows
a  high level of clustering). A high clustering coefficient for an entire system suggests multiple segregated communities of nodes (referred to as modules, as indicated in
figure). Related measures include local efficiency and modularity of a system. Integration measures describe how effectively information is transferred across networks by
calculating the number of connections or paths between nodes (characteristic path length), with a shorter path length reflecting more efficient information exchange (e.g.,
shortest  path between nodes 2 and 6 is four, indicated in red). A similar measure used in characterizing disconnected networks, such as those in aging and disease, is global
efficiency calculated as the inverse of the average path length. Measures of influence describe the importance of individual nodes (hubs) in coordinating interactions amongst
nodes  or across modules. Hubs are determined on the basis of a high number of connections or by their inclusion in the shortest path lengths across a network (centrality
measures). In sum, measures of segregation, integration and influence, may  provide a new framework from which to understand the topology and function of the healthy,
aged,  and diseased brain.

Adapted from He and Evans (2010) and Rubinov and Sporns (2010).
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