Contents lists available at ScienceDirect

Redox Biology

journal homepage: www.elsevier.com/locate/redox

Cysteines 208 and 241 in $\text{Ero1}\alpha$ are required for maximal catalytic turnover

Thomas Ramming^{a,1}, Shingo Kanemura^{b,1}, Masaki Okumura^b, Kenji Inaba^b, Christian Appenzeller-Herzog^{a,2}

^a Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland ^b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Sendai, 980-8577, Japan

ARTICLE INFO

Article history: Received 10 October 2015 Received in revised form 11 November 2015 Accepted 12 November 2015 Available online 14 November 2015

Keywords: Ero1α PDI Disulfide bond Redox homeostasis Endoplasmic reticulum

ABSTRACT

Endoplasmic reticulum (ER) oxidoreductin 1α (Ero 1α) is a disulfide producer in the ER of mammalian cells. Besides four catalytic cysteines (Cys⁹⁴, Cys⁹⁹, Cys³⁹⁴, Cys³⁹⁷), Ero 1α harbors four regulatory cysteines (Cys¹⁰⁴, Cys¹³¹, Cys²⁰⁸, Cys²⁴¹). These cysteines mediate the formation of inhibitory intramolecular disulfide bonds, which adapt the activation state of the enzyme to the redox environment in the ER through feedback signaling. Accordingly, disulfide production by Ero 1α is accelerated by reducing conditions, which minimize the formation of inhibitory disulfides, or by mutations of regulatory cysteines. Here we report that reductive stimulation enhances Ero 1α activity more potently than the mutation of cysteines. Specifically, mutation of Cys²⁰⁸/Cys²⁴¹ does not mechanistically mimic reductive stimulation, as it lowers the turnover rate of Ero 1α in presence of a reducing agent. The Cys²⁰⁸/Cys²⁴¹ pair therefore fulfills a function during catalysis that reaches beyond negative regulation. In agreement, we identify a reciprocal crosstalk between the stabilities of the Cys²⁰⁸-Cys²⁴¹ disulfide and the inhibitory disulfide bonds involving Cys¹⁰⁴ and Cys¹³¹, which also controls the recruitment of the H₂O₂ scavenger GPx8 to Ero 1α . Two possible mechanisms by which thiol–disulfide exchange at the Cys²⁰⁸/Cys²⁴¹ pair stimulates the catalytic turnover under reducing conditions are discussed.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The synthesis of extracellular proteins is initiated at the endoplasmic reticulum (ER) where translating ribosomes translocate the nascent polypeptides into the ER lumen. Many of these polypeptides subsequently acquire critical covalent linkages between cysteine residues (termed disulfide bonds) through thiol-disulfide exchange reactions. Among the different systems for disulfide bond formation in the ER, ER oxidoreductin 1 (Ero1)-catalyzed oxidation of the active-site cysteine pair in protein disulfide isomerase (PDI) constitutes the best-conserved pathway [1,2]. Ero1 in vertebrates exists in two isoforms, $\text{Ero1}\alpha$ and $\text{Ero1}\beta$, whereas $\text{Ero1}\alpha$ is ubiquitously expressed and being viewed as the major source of disulfides in humans [3].

The flavoprotein $\text{Ero1}\alpha$ is an oxidase that couples the reduction of molecular oxygen (O₂) to disulfide-bond formation [3]. In the reductive phase of the $\text{Ero1}\alpha$ catalytic cycle, the flavin adenine

Christian.Appenzeller@sbl.ch (C. Appenzeller-Herzog).

¹ Equal contribution

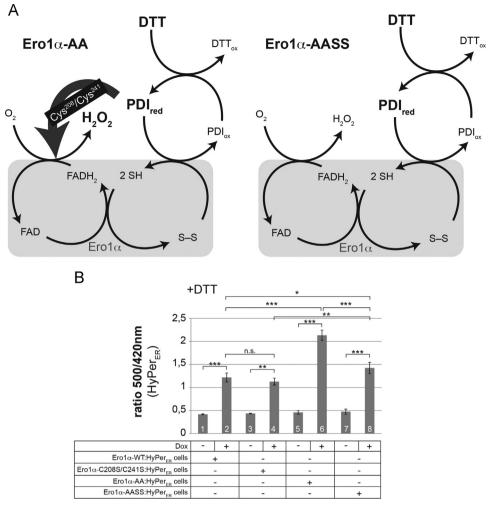
result of disulfide transfer from Ero1 α to reduced PDI (PDI_{red}). The reaction is catalyzed by an outer active-site cysteine pair (Cys⁹⁴/Cys⁹⁹), which shuttles two electrons from PDI_{red} via an inner active-site cysteine pair (Cys³⁹⁴/Cys³⁹⁷) to FAD. This process is tightly regulated by the reversible formation of two inhibitory disulfides (Cys⁹⁴–Cys¹³¹ and Cys⁹⁹–Cys¹⁰⁴) [4–6]. In the oxidative phase, FAD is regenerated by the transfer of two electrons onto O₂, which leads to the formation of one molecule of hydrogen peroxide (H₂O₂) [7]. Recent evidence indicates that H₂O₂ is instantaneously reduced to H₂O by the Ero1 α -associated glutathione peroxidase family enzymes GPx7 or GPx8, which also introduce the resulting second disulfide into PDI [8,9]. We showed that access of O₂ to the buried FAD molecule is negatively regulated by the Cys²⁰⁸–Cys²⁴¹ disulfide [10].

dinucleotide (FAD) cofactor in $Ero1\alpha$ is reduced to $FADH_2$ as a

The thiol-disulfide statuses of all inhibitory disulfide bonds in Ero1 α are governed by canonical PDI or other PDI family members [10,11]. Accordingly, regulatory cysteines fine-tune the activation state of Ero1 α in a redox environment-dependent manner by blocking either the reductive (Cys¹⁰⁴, Cys¹³¹) or the oxidative (Cys²⁰⁸, Cys²⁴¹) phase of the catalytic cycle through the formation of feedback-regulated inhibitory disulfides in response to oxidizing conditions. Conversely, a reducing ER environment promotes

http://dx.doi.org/10.1016/j.redox.2015.11.004

2213-2317/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


Research Paper

E-mail addresses: kinaba@tagen.tohoku.ac.jp (K. Inaba),

² current address: Berufsfachschule Gesundheit Baselland, 4142 Münchenstein, Switzerland

Fig. 1. (A) Schematic depicting the influence of DTT on the formation of $\text{Ero1}\alpha$ -derived H_2O_2 in the ER. The resulting high concentration of PDI_{red} exerts a stimulatory effect on $\text{Ero1}\alpha$ by catalyzing thiol-disulfide exchange at the regulatory disulfide between Cys^{208} and Cys^{241} (see main text for detailed models). (B) HyPer_{\text{ER}} fluorescence excitation spectrum analyses of indicated cell lines measured 5 min after the addition of 0.5 mM DTT were performed. Plotted are the ratios of the 500 and 420 nm peak amplitudes ($n \ge 3$; mean \pm SD). *p < 0.05; **p < 0.01;

Ero1 α activation through PDI-catalyzed reduction of these disulfides, as could for instance be important in response to physiological hypoxia or peak concentrations of reduced glutathione (GSH) or redox-active vitamins.

Here, we report that reducing conditions, which activate Ero1 α through the removal of inhibitory disulfides, more potently stimulate Ero1 α activity than the mutation of all regulatory cysteines. Thus, the presence of the Cys²⁰⁸/Cys²⁴¹ pair is required for maximal catalytic turnover under reducing conditions. Our data indicate a new mechanism of Ero1 α regulation in which thiol-disulfide exchange at Cys²⁰⁸–Cys²⁴¹ affects the stability of the Cys⁹⁴–Cys¹³¹ inhibitory disulfide through allosteric and/or intermolecular communication.

2. Materials and methods

2.1. Fluorescence excitation spectrum analysis

Cells stably transfected with $HyPer_{ER}$ were subjected to fluorescence excitation spectrum analysis as described before [12].

2.2. Dithiothreitol (DTT) washout assays

The cellular glutathione disulfide:total glutathione (GSSG:GS_{tot})

ratio after DTT washout was measured using a 5,5'-dithiobis(2nitrobenzoic acid)/glutathione reductase recycling assay as previously described [13].

2.3. Statistics

Data sets were analyzed for statistical significance using Student's *t* test (two-tailed distribution; heteroscedastic).

2.4. Cell culture and transient transfections

The culturing of HeLa cells [14] and FlipIn TRex293 cells for doxycycline (1 µg/ml, Sigma)-inducible expression of Ero1 variants [4] has been described. The following FlipIn TRex293 cell lines have been published previously: Ero1 α [4], Ero1 α -AA [6], Ero1 α -C208S/C241S, Ero1 α -AASS [10], Ero1 α -AA:HyPer_{ER} [8], Ero1 α -C208S/C241S:HyPer_{ER} [10] and Ero1 α -AASS:HyPer_{ER} [10]. The Ero1 α -WT:HyPer_{ER} cell line was created as before [8] (with the HyPer_{ER} vector kindly provided by Miklos Geiszt, Semmelweis University, Hungary).

Transient transfections of HeLa cells were carried out using Turbofect (Thermo Scientific). Transient transfections of FlipIn TRex293 cells were carried out using Metafectene Pro (Biontex). Download English Version:

https://daneshyari.com/en/article/1922831

Download Persian Version:

https://daneshyari.com/article/1922831

Daneshyari.com