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ABSTRACT This article describes the development and implementation of algorithms to study diffusion in biomolecular
systems using continuum mechanics equations. Specifically, finite element methods have been developed to solve the steady-
state Smoluchowski equation to calculate ligand binding rate constants for large biomolecules. The resulting software has been
validated and applied to mouse acetylcholinesterase. Rates for inhibitor binding to mAChE were calculated at various ionic
strengths with several different reaction criteria. The calculated rates were compared with experimental data and show very
good agreement when the correct reaction criterion is used. Additionally, these finite element methods require significantly less
computational resources than existing particle-based Brownian dynamics methods.

INTRODUCTION

Diffusion plays a central role in numerous biological

processes, governing the kinetic properties of events across

a variety of length scales: from ligand binding (Antosiewicz

et al., 1995, 1996b; Antosiewicz and McCammon, 1995;

Lesyng and McCammon, 1993; McCammon and Karplus,

1977; Northrup et al., 1984; Tan et al., 1993; Tara et al.,

1998; Wade et al., 1994) to protein-protein encounter

(Elcock et al., 2001; Gabdoulline and Wade, 2001; Northrup

and Erickson, 1992; Sheinerman et al., 2000; Zhou, 1997) to

signal transmission at synaptic junctions (Franks et al., 2002;

Kara and Friedlander, 1998; Roberts, 1994; Smart and

McCammon, 1998; Tai et al., 2003; Zoli and Agnati, 1996).

Biological simulations have been used to study such

diffusion-controlled processes in a number of settings and

have provided useful insight into the molecular determinants

of the kinetic parameters. However, accurate modeling of

diffusion within biomolecular systems while incorporating

the effects of ionic strength, solvent, and protein charges, and

applying to large biological systems with complex geome-

tries, has proven to be the rate-limiting step for a variety of

such simulations.

Currently, standard techniques for modeling diffusional

processes can be loosely grouped into particle-based and

continuum methods. Particle-based methods are typically

stochastic in nature and include Monte Carlo (Berry, 2002;

Genest, 1989; Saxton, 1992; Stiles and Bartol, 2000;

Brownian dynamics (BD) (McCammon, 1987; Northrup

et al., 1988a; Wade et al., 1993), and Langevin dynamics

(Eastman and Doniach, 1998; Yeomans-Reyna and Medina-

Noyola, 2001) simulations. The connection between BD

simulations and of the calculation of association rate

constants was established by Northrup, Allison, and

McCammon (Northrup et al., 1984) and has been studied

by numerous others (Antosiewicz et al., 1996a; Antosiewicz

and McCammon, 1995; Chung et al., 2002; Northrup et al.,

1988b; Tan et al., 1993; Tara et al., 1998; Wade et al., 1993;

Zhou, 1993; Zhou et al., 1998a; Zhou and Szabo, 1996; Zou

et al., 2000). In contrast to particle-based approaches,

continuum methods describe diffusional processes in terms

of probability or concentration profiles rather than simulating

the stochastic motion of individual particles. Continuum

methods are typically based on solutions of partial dif-

ferential equations such as the diffusion or Smoluchowski

equation (Chan and Halle, 1984; Gardiner, 1997; Lenzi et al.,

2003; Smart and McCammon, 1998; Tai et al., 2003); these

solutions can then be processed to determine ligand-protein

binding (Agmon et al., 1991; Smart and McCammon, 1998;

Tai et al., 2003; Zhou, 1990) or dissociation (Agmon, 1984).

These methods have been particularly popular in the fields of

ion channel (Coalson and Duncan, 1992; Gillespe et al.,

2002; Im and Roux, 2002; Kurnikova et al., 1999a) and

semiconductor (Selberherr, 1984) modeling.

Both particle-based and continuum diffusion methods

have their relative strengths. Particle-based methods can deal

with a wide range of diffusing molecular geometries,

whereas continuum methods are restricted to spherical

ligands. This spherical approximation is likely to be most ap-

propriate for substrates with charge distributions with small

multipole moments and reaction criteria that do not require
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a detailed fit between the substrate and macromolecule.

Additionally, particle-based approaches permit the natural

inclusion of stochastic reaction phenomena and other

complicated boundary conditions. However, the stochastic

nature of particle-based approaches can lead to convergence

problems which are not present in the deterministic con-

tinuum method. Furthermore, continuum approaches facil-

itate the inclusion of other continuum phenomena such as

elastic deformations and fluid flow. Finally, as illustrated in

this article, the computational cost of the continuum simu-

lations is significantly smaller than for particle-based

methods.

Currently, there are a number of tools available for

particle-based biomolecular diffusion simulations, includ-

ing: SDA (Gabdoulline and Wade, 1997), UHBD (Briggs

et al., 1995), MacroDox (Northrup et al., 1999), and MCell

(Stiles and Bartol, 2000). However, there are no bio-

molecule-specific tools available for analyzing diffusion

via continuum models and only a few general diffusion tools

(Krissinel and Agmon, 1996). The objective of this study is

to develop, validate, and apply algorithms to solve the

steady-state Smoluchowski equation (SSSE) with finite

element methods using realistic biomolecular geometries to

determine the steady-state ligand binding rate constant.

Specific aims in this study include: development of the

adaptive meshing method to realistically describe biomolec-

ular geometries; development of the finite element solver of

the steady-state Smoluchowski equation to analyze the con-

centration of the diffusing particles and calculate the

association rate constants; validation of the SSSE with a

simple spherical biomolecular system through the com-

parison with the analytical results; and application of the

validated SSSE solver to mouse acetylcholinesterase

(mAChE) ligand binding.

THEORY AND ALGORITHMS

The steady-state Smoluchowski equation

The Smoluchowski equation describes the overdamped (i.e.,

instantaneous momentum relaxation) dynamics of multiple

particles while neglecting interparticle interactions (Smolu-

chowski, 1917; Szabo et al., 1988; Zhou, 1990). For

a stationary diffusion process, the Smoluchowski equation

has the steady-state form of

LpðxÞ ¼ = � DðxÞ½=pðxÞ1bpðxÞ=WðxÞ� ¼ 0; (1)

where Lp(x) represents ðdpðx; tÞ=dtÞ (t is the time), p(x) is the
distribution function of the reactants, D(x) is the diffusion

coefficient, b ¼ 1/kT is the inverse Boltzmann energy, k is

the Boltzmann constant, T is the temperature, andW(x) is the
potential mean force (PMF) for the diffusing particle. The

above steady-state Smoluchowski equation (SSSE) can also

be written in terms of the flux operator J, which generates

vector-valued functions and is defined as

JpðxÞ ¼ DðxÞ½=pðxÞ1bpðxÞ=WðxÞ�; (2)

allowing Eq. 1 to be rewritten as

LpðxÞ ¼ = � JpðxÞ ¼ 0: (3)

The SSSE can be solved to determine bimolecular diffu-

sional encounter rates. Following the work of Zhou (1990),

the application of the SSSE to this problem involves the

solution of Eq. 3 in a three-dimensional domain V, with the

following boundary conditions: a bulk Dirichlet condition on

the outer boundary Gb � @V,

pðxÞ ¼ pbulk for x 2 Gb; (4)

specifying the bulk concentration pbulk; a reactive Robin or

Dirichlet condition on the active site boundary Ga � @V,

nðxÞ � JpðxÞ ¼ aðxÞpðxÞ for x 2 Ga; (5)

or

pðxÞ ¼ 0 for x 2 Ga; (6)

providing either an intrinsic reaction rate a(x) or an absolute

reactivity, respectively; and a reflective Neumann condition

on the nonreactive boundary Gr � @V;

nðxÞ � JpðxÞ ¼ 0 for x 2 Gr: (7)

The problem domain is depicted in Fig. 1; D is a simply

connected domain with boundary Gb, which represents the

volume containing the reactive object and the solvent. The

domain J � D is a simply connected region representing the

reactive object with boundary Gar ¼ Ga [ Gr such that Ga [
Gr ¼ 0. The Gr portion of this boundary represents the

FIGURE 1 Schematic of problem domain denoting the various surfaces

and volumes described in the text.
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