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a b s t r a c t

In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of
disease-associated genes are still unknown. Many network-based approaches have been used to
prioritize disease genes. Many networks, such as the protein–protein interaction (PPI), KEGG, and
gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been
successfully applied for the determination of genes associated with several diseases. In this study,
we constructed an eQTL-based gene–gene co-regulation network (GGCRN) and used it to mine for
disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associ-
ated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI
network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and
revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and
GGCRN is an effective method for disease-associated gene mining.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In humans, despite the rapid increase in the discovery of dis-
ease–associated genes, the molecular basis of many diseases is still
known. Even for diseases for which the molecular basis is partially
understood, a large proportion of the associated genes are still
unknown. The known disease-associated genes have been reported
to represent only a very small proportion of the actual number of
disease-associated genes [1,2]. Hence, mining for disease genes
remains important.

Network-based approaches to human disease have multiple
biological and clinical applications [3,4]. Many molecular networks
have been constructed experimentally to characterize the physical

and/or functional interactions between biomolecules [4,5]. There
are many methods for disease gene mining using molecular net-
works, such as the direct neighborhood [6–13], Shortest path
length [13–16], Diffusion kernel [8], random walk with restart
[8,9,17], propagation flow [18], and clique backbone [19] methods.
The random walk with restart (RWR) method has been reported to
have the best performance in terms of precision and recall, while
both the random walk and propagation flow methods are superior
to the clustering and neighborhood methods [20,21]. The most
useful network is the protein–protein interaction (PPI) network
[6,8,9]. Some other resources are also used in disease gene mining,
such as gene ontology, gene co-expression network, KEGG, struc-
ture, and TRANSFAC [7,10,15,16].

Expression quantitative trait loci (eQTLs) analyses of DNA use
hundreds of thousands of single-nucleotide polymorphism (SNP)
markers that capture human genetic variation [22]. This strategy
has been successfully applied to several diseases, such as celiac dis-
ease [23], asthma [24] and type 2 diabetes [25]. An eQTL is a locus
that regulates a gene expression phenotype [26]. If two genes are
regulated by one or more of the same SNPs, they are considered
to be co-regulated. Obviously, this co-regulation is only one type
of gene interactions. We constructed a gene–gene co-regulation
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network (GGCRN) using eQTL data and believe that it will be useful
for disease gene mining.

In this study, we developed a GGCRN, integrated it with the PPI
network, and used the RWR method to mine for candidate disease
genes. Using Alzheimer disease (AD) as an example, we demon-
strated that this newly developed GGCRN is an effective resource
for disease gene mining.

2. Materials and methods

2.1. Materials

2.1.1. Protein–protein interaction data
The Human Protein Reference Database (HPRD) describes inter-

action networks in the human proteome [27]. All information in
the HPRD has been manually extracted from the literature by
expert biologists who read, interpreted and analyzed the published
data. For this study, we used HPRD, release 9, which contains
38,989 protein–protein interactions among 9605 proteins.

2.1.2. EQTL data
We used human brain tissue data for this disease gene mining

study. The data were obtained from a series of 193 neuropathologi-
cally normal human brain samples using the Affymetrix GeneChip
Human Mapping 500 K Array Set and Illumina HumanRefseq-8
Expression BeadChip platforms [28]. The eQTLs were determined
by Matrix eQTL [29]. In this study, the cis-eQTL definition was a
SNP within the gene body +1 Mb up/down stream of the gene body.
We calculated cis-eQTLs and trans-eQTLs and performed FDR
adjustment (q value < 0.1) separately; then we combined the cis-
eQTLs and trans-eQTLs. Finally, we obtained 25,866 significant
SNP-gene association pairs of 3709 genes. The results can be down-
loaded from the seeQTL database [30].

2.1.3. AD-related genes
Online Mendelian Inheritance in Man (OMIM) is a comprehen-

sive, authoritative compendium of human genes and genetic phe-
notypes that is freely available and updated daily. AD is classified
as a neurodegenerative disorder, and it is associated with plaques
and tangles in the brain [31]. We obtained 29 AD-related terms
from OMIM [32]. After removing the terms with no approved gene
symbol, we obtained 15 AD-related genes. Of these 15 genes, 14, 4
and 14 genes were present in the HPRD PPI, the GGCRN, and the
HPRD PPI and GGCRN integrated network (Union network). We
used the 14 genes that were present in the Union network for
the subsequent analyses. See Supplemental Table 1.

2.2. Methods

2.2.1. Gene–gene co-regulation network construction
The human brain data included 25,866 significant SNP-gene

association pairs of 3709 genes. For each gene, we first extracted
the SNPs that regulate it, and we called these significant related
SNPs. If a SNP regulated two genes, we called it a common SNP
of the two genes. We considered two genes to be co-regulated if
a specific proportion of SNPs regulated both genes.
Mathematically, for any 2 genes (Gi and Gj), there are n1 and n2 sig-
nificant related SNPs, respectively. The gene–gene co-regulation
coefficient is defined as

corecoðGi;GjÞ ¼
#ðSNPs in Gi \ SNPs in GjÞ
#ðSNPs in Gi [ SNPs in GjÞ

;

Where # (A) is the element number in set A. In other words,
#ðSNPs in Gi \ SNPs in GjÞ is the number of common SNPs that
regulate both gene Gi and Gj; and #ðSNPs in Gi [ SNPs in GjÞ is

the number of SNPs that regulate gene Gi or Gj. For example, if Gi

and Gj have 100 and 80 significant related SNPs, respectively, and
30 of them are common SNPs for Gi and Gj, then the co-regulation
coefficient is 30/(100 + 80 � 30) = 0.2. After calculating all co-reg-
ulation coefficients for all gene pairs, a reasonable threshold value
for filtering the significant co-regulated gene pairs had to be estab-
lished; for this purpose, we used the clustering coefficient differ-
ence maximization method [33]. The main function of this
method is the determination of the difference in the maximum
clustering coefficient difference between a real network and a ran-
dom network if the real network is highly credible. Finally, we
obtained the GGCRN using the significant co-regulated gene pairs.

2.2.2. Random walk with restart algorithm
In this paper, we focused on the genetic data resources rather

than on statistical methods. Therefore, we adopted a classic and
efficient method. The random walk algorithm (RW) for graphs is
defined as an iterative walker’s random transition from its current
node to a neighboring node, and this is initiated at a given source
node [34,35]. The random walk with restart algorithm (RWR) [36]
is a variant of the random walk that allows for the restart of the
walk at every time step at source node s with probability r.
Formally, the RWR is defined as:

ptþ1 ¼ ð1� rÞWpt þ rp0

where W is the column-normalized adjacency matrix of the graph
and pt is a vector in which the ith element holds the probability
of being at node i at time step t. A special case is the initial proba-
bility vector, p0, which is the probability of being at source node, s.
In our application, p0 was constructed such that equal probabilities
were assigned to the known disease genes, with the sum of the
probabilities equal to 1. Genes were ranked according to the values
in the steady-state probability vector pN. This was obtained by per-
forming the iteration until the change between pt and pt+1 fell below
10�6. The results of RWR are affected by the restart probability, r.
We perform a numerical experiment to select the proper r value.

The flow chart is illustrated in Fig. 1.

2.2.3. Direct neighborhood algorithm
We also compared the RWR method with the direct neighbor-

hood (DN) method. In the DN method, the interaction partners in
the network were determined for each known disease gene. The
more linkages that exist between a gene and known disease genes
for a particular disease, the greater the possibility that it is related

Fig. 1. The flow chart of RWR method using the Union network.
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