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Abstract

This study aims to evaluate the robustness of clinical and metabolic phenotyping through, for the first time, the identification of differential responsiveness to dietary
strategies in the improvement of cardiometabolic risk conditions. Clinical phenotyping of 57 volunteers with cardiovascular risk factors was achieved using k-means cluster
analysis based on 69 biochemical and anthropometric parameters. Cluster validation based on Dunn and Figure of Merit analysis for internal coherence and external
homogeneity were employed. k-Means produced four clusters with particular clinical profiles. Differences on urine metabolomic profiles among clinical phenotypes were
explored and validated bymultivariate orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) models. OSC-PLS-DA of 1H-NMR data revealed
that model comparing “obese and diabetic cluster” (OD-c) against “healthier cluster” (H-c) showed the best predictability and robustness in terms of explaining the pairwise
differences between clusters. Considering these two clusters, distinct groups ofmetabolites were observed following an interventionwithwine polyphenol intake (WPI; 733
equivalents of gallic acid/day) per 28 days. Glucose was significantly linked to OD-cmetabotype (Pb.01), and lactate, betaine and dimethylamine showed a significant trend.
Tartrate (Pb.001) was associated withwine polyphenol intervention (OD-c_WPI and H-c_WPI), whereas mannitol, threoninemethanol, fucose and 3-hydroxyphenylacetate
showed a significant trend. Interestingly, 4-hydroxyphenylacetate significantly increased in H-c_WPI compared to OD-c_WPI and to basal groups (Pb.05)-gut microbial-
derived metabolite after polyphenol intake-, thereby exhibiting a clear metabotypic intervention effect. Results revealed gut microbiota responsive phenotypes to wine
polyphenols intervention.Overall, this study illustratesanovelmetabolomic strategy for characterizing interindividual responsiveness todietary interventionand identification
of health benefits.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Metabolic phenotypes (metabotypes) are the result of interactions
among several different factors (diet, lifestyle, gut microbiota,

genetics, etc.) and describe characteristic metabolic profiles reflecting
the biochemistry, the physiological status and the environmental
exposure in a population. There have been many reports of direct
applications of metabolic phenotyping in a clinical setting [1]. Diet is
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an important modulator of the human metabolic phenotype. The
study of metabolic phenotyping will drive to a deeper analysis of the
heterogeneous metabolic response to apparently homogeneous
dietary interventions [2], improving our understanding upon distinct
individual metabotypes and the linkage between diet and disease [3].

Metabolomic technologies permit the characterization of large
numbers of small molecules in human biofluids. 1H-NMR-based
metabolomics is a very robust technique for performing metabolomic
studies, enabling the simultaneous detection and quantification of awide
range of different metabolites. Because of this, NMR-basedmetabolomics
has been applied in a variety of disciplines. In the field of nutrition, NMR-
based metabolomics has been used to identify the most significant
changes in a metabolic profile arising from dietary intervention studies,
dietary biomarker studies anddiet-related disease studies [4,5]. It can also
beused to identify newsmallmolecule candidates for disease biomarkers,
including conditions such as cardiovascular disease [6].

Cardiovascular disease (CVD) is the leading cause of mortality
worldwide, with CVD-associated deaths rising very quickly in low-to-
middle income countries. Modifiable risk factors for CVD—which include
hypertension, smoking, abdominal obesity, abnormal lipids, diabetes
mellitus, stress, low consumption of fruits and vegetables, and lack of
regular physical activity— are themajor contributors to CVDmorbidity and
mortality [7]. Additionally, reduced plasma high-density lipoprotein (HDL)
levels and elevated plasma triacylglyceride (TAG) concentrations are
known to be significant risk factors for ischemic heart disease (IHD) [8].
C-reactiveprotein (CRP) is anotherCVDriskmarker, andhighplasma levels
of homocysteine are considered tobe a risk factor for vascular disease, heart
failure and strokes [9]. Another important risk factor is type 2 diabetes
mellitus (T2D). The prevalence of T2D is increasing rapidly around the
world. Clinical predictors such as body mass index (BMI), fat distribution
measured by waist-hip ratio (WHR), CRP and fasting blood glucose levels
canbehelpful inmeasuringdiabetes risk [10–13]; however, the integration
of high-throughput technologies as metabolomics can incorporate novel
biomarkers with the potential to shift the research paradigm from the
traditional “black-box” strategy to a systems approach [14].

The low incidence of CVD and coronary heart disease (CHD) in
Mediterranean countries has been partly assigned to their distinct dietary
habits [15]. As one of the main constituents of Mediterranean diet, wine
and its components, especially polyphenols, may provide additional
health benefits [16]. In particular, the regular consumption of wine
polyphenols used in this study appears to mitigate CVD risk factors,
leading to reduced blood pressure [17] and inflammatory parameters
[18]. Furthermore, the health benefits of polyphenols provided by wine
intake on gut microbiota are of particular interest [19]. In the present
study, a long-term feeding trial was performed to determine changes in
urinarymetabolites betweendifferentmetabotypes. Therefore, the aimof
the present work was to classify a specific population into phenotypic
groups according to their biochemical characteristics, and then to use 1H-
NMR-based urinary metabolomics to observe the different metabolic
responses after red wine polyphenol intake (WPI).

2. Materials and methods

2.1. Subjects and study design

The study was a prospective, randomized, crossover and controlled trial [17]. High-
risk subjects aged ≥55 years without documented CHD (CHD: IHD — angina/recent or
past myocardial infarction/previous or cerebral vascular accident, peripheral vascular
disease) were recruited for the study. The subjects included had diabetes mellitus or
more than three of the following CVD risk factors: tobacco smoking, hypertension,
hypercholesterolemia, plasma low-density lipoprotein (LDL) cholesterol ≥160 mg/dl,
plasma HDL cholesterol b40 mg/dl, obesity [BMI (in kg/m2) ≥30] and/or a family history
of premature CHD (first-line male relatives b55 years or females b65 years).
Participants had to voluntarily give signed informed consent. Subjects with a previous
history of CVD, any severe chronic disease, alcoholism or other toxic substance abuse
were excluded.

To fulfil the objectives of the present study, we used 1H-NMR spectroscopy to
evaluate the urinary metabolomes from 57 participants between baseline and after

28 days of redWPI (polyphenol content: 733 equivalents of gallic acid/day) in the form
of dealcoholized wine from a Merlot grape variety. Results of polyphenol composition
analysis of the beverages are shown in Supplementary Table 1. Twenty-four-hour urine
samples were collected at baseline and the day after the last day of the intervention.
Aliquots were immediately stored at −80°C until analysis. The institutional review
board of the hospital approved the study protocol, and all participants gave written
consent before participation in the study. The trial has been registered in the Current
Controlled Trials in London, International Standard Randomized Controlled Trial
Number (ISRCTN88720134).

2.2. Anthropometric measurements and biochemical analyses

Anthropometric measurements and biochemical analyses were performed using
standardized methods [20]. BMI and WHR were measured in all the participants to
evaluate their obesity status. Systolic and diastolic blood pressures as well as heart rate
were also measured. Clinical parameters were tested in the blood and urine of
participants at the beginning of the study (baseline) in order to characterize the
biochemical status of each participant. Blood glucose levels, total cholesterol, HDL
cholesterol, LDL cholesterol, LDL/HDL ratio, TAGs, 24-h diuresis, plasmatic creatine, uric
acid, aminotransferases, bilirubin, ferritin, CRP, albumin, enzymes (alkaline phospha-
tase, lactate dehydrogenase) and ions (Na+, K+), as well as globulins, apolipoprotein
levels, hemoglobin and red blood cell count, with several coagulation parameters
(prothrombin, thrombin, fibrinogen) were measured. In total, 69 anthropometric and
biochemical baseline parameters were evaluated. These are shown in Table 1.

2.3. Biochemical biomarkers and clinical phenotype by a k-means algorithm

The final data set contained 69 variables from 57 samples (of the initial set of 61
individuals, 4 were excluded because of incomplete data regarding clinical and
anthropometric parameters). Prior to k-means analysis, all variables were typified. All
cluster metrics were computed with 1000 different random initializations of the k-
means algorithm in order to avoid local minima. A maximum number of 100 iterations
were allowed in the k-means calculations. All computations were carried out using the
R package for Statistical Computing v. 2.14.1. This included the statistics package for the
k-means algorithm and the clValid package for the cluster validation analysis. Dunn
analysis for internal coherence and Figure of Merit analysis for external homogeneity
were applied to the data set employing Euclidean distances and a k-means clustering
algorithm. Our results suggest that a cluster solution consisting of four centers or groups
(four clusters) showed the optimal properties of internal coherence and grouping
stability (the detailed methodology and the validation procedure are in the Online
Supplementary Material; Supplementary Methodology).

2.4. Metabolomic NMR spectroscopy

2.4.1. 1H-NMR sample preparation, data acquisition and processing
The protocols used for this work were based on previously published methodology

[21]. The urine samples were thawed, vortexed and centrifuged at 13,200 rpm for
5 min. The supernatant (600 μl) from each urine sample was mixed with an internal
standard solution [120 μl, consisting of 0.1% 3-(trimethylsilyl)-proprionate-2,2,3,3-d4
(TSP), chemical shift reference, 2 mM of sodium azide (NaN3, bacteriostatic agent) and
1.5 MKH2PO4 in 99% deuteriumwater (D2O)]. The optimized pH of the buffer was set at
7.0, with a potassium deuteroxide (KOD) solution, to minimize variations in the
chemical shifts of the NMR resonances. The mixture was transferred to a 5-mm NMR
tube. The processed spectral data were bucketed in domains of 0.005 ppm and
integrated using ACD/NMR Processor 12.0 software (Advanced Chemistry Develop-
ment, Inc.). The spectral region between 4.75 and 5.00 ppmwas excluded from the data
set to avoid spectral interference from residual water.

2.5. Statistical analysis

2.5.1. Biochemical biomarkers and phenotyping cluster differences
Clusters were performed using k-means cluster analysis as described previously. A

Kolmogorov–Smirnov test (Pb.05) was used to test the normality of the all variables
using SPSS, version 18.0 for Windows (SPSS, Chicago, IL, USA). Analysis of variance
(ANOVA) was performed to evaluate differences in the mean biochemical measure-
ments across clusters where statistical differences were analyzed (Pb.05). Comparisons
between clusters were assessed using a Tukey post hoc multiple comparison test. In the
case of nonparametric variables, a Kruskal–Wallis test was used to test significant
differences. Additionally, a Mann–Whitney test was used to detect significances
between clusters. All these tests were performed by SPSS, version 18.0 for Windows
(SPSS, Chicago, IL, USA).

2.5.2. Metabolomic cluster analysis — OSC-PLS-DA multivariate analysis
Data generated from the NMR spectral integration were submitted to MetaboA-

nalyst (www.metaboanalyst.ca). Data were normalized using the sum of the spectral
intensities, then log transformed and Pareto scaled. Data were then analyzed using the
SIMCA-P+ 13 software (Umetrics, Umea, Sweden) by multivariate discriminant
analysis OSC-PLS-DA (orthogonal signal correction partial least-squares discriminant
analysis). A pairwise comparison analysis between the four clusterswas carried out. The
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