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a b s t r a c t

Essential proteins play a crucial role in cellular survival and development process. Experimentally, essen-
tial proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to
the target organisms. Regarding this, an alternative yet important approach to essential protein identifi-
cation is through computational prediction. Existing computational methods predict essential proteins
based on their relative densities in a protein–protein interaction (PPI) network. Degree, betweenness,
and other appropriate criteria are often used to measure the relative density. However, no matter what
criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we
presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein–protein
interactions by integrating their edge weights, and then identified sub PPI networks consisting of those
highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We eval-
uated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and
Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better perfor-
mance than the state-of-the-art methods in terms of precision–recall and Jackknife measures. We had
also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant
modules by its highly-ranked protein–protein interactions for S. cerevisiae, E. coli, and C. elegans. We
believe that, with sufficient data provided, IEW can be used to any other organisms’ essential protein
identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Essential proteins are indispensable for the survival of an organ-
ism under certain conditions [1]. Reliable identification of essential
proteins is of great significance since it can contribute to a better
understanding of the key biological processes of an organism at
molecular level, which is useful for guiding drug design, disease
diagnosis, and medical treatments. Experimentally, many
researchers identify proteins’ essentiality by knocking out some
particular proteins and checking the viability of the affected organ-
isms [1,2]. However, the cost of such biological wet-lab

experiments is normally very high, and more importantly, they
are ethically impossible on humans. This makes in silico analysis
a necessary method of choice to carry out the research.
Currently, there is still much work to be done by computational
biologists for the effective identification of essential proteins.

Nowadays, due to high-throughput techniques, large-scale pro-
tein–protein interaction (PPI) data are available for many organ-
isms, especially for some model organisms such as Saccharomyces
cerevisiae and Escherichia coli. Based on these data, several studies
have been conducted, and these studies aim to investigate the rela-
tionships between experimentally identified essential proteins and
PPI networks. Jeong et al. [3] noted that the essentiality of a protein
had high correlation with its centrality in a PPI network, and this
observation is formulated as the centrality-lethality rule [3,4].
Guided by this rule, many measures have been proposed for essen-
tial protein detection, such as degree centrality [3], betweenness
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centrality [4], closeness centrality [5], subgraph centrality [6],
eigenvector centrality [7], and network bottleneck [8]. Basically
these methods rank proteins based on their centrality measures
in a PPI network to identify their essentiality. In addition to these
purely node-centrality based algorithms, a few edge-aided meth-
ods have also been developed. For instance, Wang et al. [9]
employed the concept of edge clustering coefficient (the NC
method) to identify essential proteins in a PPI network. Further
improvements of the NC method were achieved by taking gene
expression information (PeC) [10] into consideration. Although
edge information plays an important role in the prediction pro-
cesses of these edge-aided methods, the fundamental idea behind
these methods is still ranking proteins according to their centrality
measure in the PPI network.

In 2005, Pereira-Leal et al. [11] pointed out that essential pro-
teins tended to be more frequently connected to other essential
proteins rather than to non-essential proteins in S. cerevisiae PPI
networks. They found that after removing all the non-essential
proteins from a PPI network, approximately 97% of the essential
proteins were still connected, and this suggested a close interac-
tion relationship among essential proteins. He et al. [12] tried to
explain the reason why highly connected nodes tend to be essen-
tial and proposed the concept of essential protein–protein interac-
tions. They argued that the essentiality of proteins came from the
essentiality of protein–protein interactions rather than the pro-
teins per se, changing substantially the perspective of the problem.
Regarding this, some researchers have taken this direction by scor-
ing the relatedness of proteins connected by edges in a PPI network
[9,10,13]. Some of these measures are based on the topology of a
PPI network, such as the number of triangles an edge belongs to
[9], while other measures are obtained by integrating other biolog-
ical information, such as Gene Ontology similarity and gene co-ex-
pression degree (the EW method) [10,13].

In this paper, we presented a novel essential-protein prediction
strategy. Unlike other state-of-the-art methods which directly rank
proteins, our method (IEW) predicted essential proteins based on
Integrated Edge Weights. By integrating several widely used PPI
topological information and biological data, IEW can overcome
the possible failure of one or more attributes. We took a compre-
hensive evaluation on the S. cerevisiae, E. coli, and Caenorhabditis
elegans datasets, and proved that IEW was a more accurate and
robust method than its competitors. Furthermore, the predicted
high-ranked edges tend to be highly biologically significant in S.
cerevisiae, E. coli, and C. elegans PPI networks.

2. Methods

After collecting data from various sources, the whole workflow
of our method is divided into four parts, as shown in Fig. 1. First,
we assess a particular interaction by using five different measure-
ments. Second, we integrate these five measurements into a final
weight so that we can rank all the links of a PPI network and obtain
a list of the essential interactions. Third, we predict essential pro-
teins based on the obtained essential interaction list. Finally, we
use three evaluation methods to test our prediction strategy.

2.1. Protein–protein relationship evaluation

The IEW model aims to evaluate the relationship between two
proteins from various perspectives. To achieve this purpose, we
integrated into our final model five measures ranging on topology
information, gene expression information, physical interaction,
gene annotation, and degree of conservation. Among them, topol-
ogy information, gene expression information, and gene annota-
tion information have been widely used, while to the best of our

knowledge physical interaction information and degree of conser-
vation are used for the specific purpose of this research for the first
time.

2.1.1. Measure 1: number of triangles
Topological characteristics of PPI networks encode important

information related to the lethality of the absence of a protein.
According to the centrality-lethality rule, we considered that
essential protein–protein links should tend to be more cliquish.
Estrada [14] reported that the proteins selected by any of the spec-
tral measures of centrality tended to form clusters of highly inter-
connected nodes, and these clusters contained a large number of
triangles as measured by the clustering coefficient. Therefore, in
this research we used the number of triangles (NTE) as one of
the measures to determine the significance and centrality of an
edge.

In an undirected graph G = (N, E), where N is the set of the pro-
teins (nodes) in the network, and E is the set of the interactions
(edges), the NTE of an edge (u, v) is defined as:

NTEðu; vÞ ¼ jCu \ Cv j þ 1; ð1Þ

where Cu (or Cv ) denotes the set of neighbours of node u (or v) in a
PPI network; jCu \ Cv j is the number of neighbours shared by nodes
u and v, which coincides with the number of triangles that the edge
(u, v) belongs to. We add the value ‘‘1’’ at the end of the equation to
make the result always bigger than zero. This is to prevent that
NTEs between every two proteins are equal to zero, which will
cause problems in the normalisation process.

2.1.2. Measure 2: gene expression similarity
Gene expression data are perhaps the most easily obtained and

widely used biological data. Studying co-expression patterns [15]
can provide useful insights to analysing the underlying cellular
processes. Because the co-expressed genes have a high probability
to encode interacting proteins [16], we chose gene expression sim-
ilarity as one of the five measurements. In our method, we used
Pearson Correlation Coefficient as the gene expression similarity
testing method. The gene expression similarity (GES) of proteins
u and v are calculated as follows:

Fig. 1. The overall workflow of the proposed method. After data collection, our
method can be divided into four steps: (A) protein–protein relationship evaluation;
(B) essential PPI prediction by the Integrated Edge Weight; (C) essential protein
prediction; (D) prediction result evaluation.
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