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A B S T R A C T

An analytical thermodynamically self-consistent equation is proposed for the dependence on
composition of the solvent activity of ternary solutions with electrolytic and molecular components
(polyols, sugars, etc.). This equation was derived on the basis of the sum of contributions from short and
long range interactions to the excess Gibbs free energy of solution. The correlation of experimental data
corresponding to 20 aqueous ternary systems was successfully carried out. The results obtained
demonstrate an excellent fitting capability of the proposed equation.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

Thermodynamics of solution is characterized by its ability to
describe the mixing effects through the use of partial molar
properties. For example, the chemical potential of a given
component in solution is evaluated from the partial molar excess
Gibbs free energy (RTln g i), which dependence on composition can
be described by one of the many correlation equations available.
The parameters of such equations are calculated starting from the
correlation of the experimental dependence of the excess Gibbs
free energy on composition.

A different situation arises when only one component, the
solvent (1), is volatile, while the solutes (2, 3) can be considered
non volatile (electrolytes, polysaccharides, amino acids, etc.). In
these cases, the activity of the solvent can be evaluated directly
from the corresponding solution vapor pressure and thus the
experimental dependence of the solvent activity on composition
a1(m2,m3) is obtained. To describe these systems, binary or ternary,
it is usual to employ polynomial expressions [1–11], which are
used independently of the nature of the solution. The problem is
that the first terms of the polynomial are strongly dependent on
the nature of the system and consequently, in most cases these
expressions are not thermodynamically consistent, as they do not
satisfy the limiting behavior required by the thermodynamics of
solutions. Therefore, the subsequent use of the equation a1(m2,m3)

for the evaluation of other thermodynamic properties (activity
coefficients of the solutes, etc.) will lead to erroneous results.

In this context and due to the lack of reliable analytical
expressions to describe the dependence a1(m2, m3), the aim of the
present work is to develop a thermodynamically consistent simple
multiparametric equation that can represent the experimental
dependence of the solvent activity on composition with high
accuracy for ternary solutions constituted by one electrolytic
compound and one molecular compound in the whole range of
composition. Moreover, the resulting expression will be suitable
for the application of theMcKay-Perrin [12,13], Canagaratna [14] or
de Pablo [15] methods for the calculation of the activity
coefficients of the other components of the solution, as well as
for any other calculations of thermodynamic properties.

2. Theoretical considerations

2.1. Multiparametric equation

It is considered a ternary solution constituted by a solvent (1) an
electrolyte (2) and a molecular component (3). The electrolyte its
characterized by the formula unit AvACvC ,

AvACvC ! vAA
ZA þ vCC

ZC (1)

Being nA (nC) the stoichiometric coefficient of the anion (cation)
corresponding to the dissociation of the electrolyte (2). The
molality (mi) is the concentration used for both components,
however in order to develop the multiparametric equation of the

solvent activity a1(m2,m3), the independent variables z ¼ m1=2
2 and
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m3 are adopted. The first one is chosen in order tomake compatible
the behavior of the solution at infinite dilution (mi!0) with the
way in which the correlation equation is set. In this context, the
dependence a1(z,m3) can be described by a Mclaurin series
expansion as follows,

a1ðz;m3Þ ¼ 1
þA11zþ A12m3
þA21z2 þ A22zm3 þ A23m2

3
þA31z3 þ A32z2m3 þ A33zm2

3 þ A34m3
3

þA41z4 þ A42z3m3 þ A43z2m2
3 þ A44zm3

3 þ A45m4
3

þA51z5 þ . . .

(2)

This expression contains 15 coefficients, being many of them
determined by the limiting behavior of this type of solutions,
which is developed in the following item.

2.2. Analytical description of the behavior of dilute solutions

The coefficients Aij of the expression a1(z, m3) given by Eq. (2)
must be consistent with the constrains imposed by the Thermo-
dynamics of solutions. In order to ensure this consistency, a
condition of third order contact with the limiting behavior is
applied to the proposed expression. Consequently, an exact
dependence of a1(z, m3) for diluted solutions is required. This
can be obtained from the integration of the Gibbs–Dühem
equation on terms of activity coefficients. The equation at constant
temperature and neglecting the effect of pressure change with
composition can be written as,

no
1dlng1 þ nm2dlngo

� þm3dlngo
3 ¼ 0 (3)

The corresponding reference states for the activity coefficients are
perfect solution for the solvent (g1) and ideal dilute solution for
components 2 (go

�) and 3 (go
3). From the integration of Eq. (3) along

constant xo3 ¼ m3=ðnm2 þm3Þ, the following expression for the
logarithm of the activity coefficient of solvent is obtained (see
derivation in Appendix),

lng1 ¼ Ag

3
ffiffiffi
2

p
no
1

ðnAz2A þ nCz2CÞ3=2m3=2
2 þ Bm2

3 þ 0:5ðB� CÞnm2m3

ðno
1 þ nm2 þm3Þ2

(4)

Thus, the solvent activity of dilute solutions constituted by an
electrolyte and a molecular solute can be described,

lna1 ¼ ln
no
1

no
1 þ nm2 þm3

� �
þ Ag

3
ffiffiffi
2

p
no
1

ðnAz2A þ nCz2CÞ3=2m3=2
2

þ Bm2
3 þ 0:5ðB� CÞnm2m3

ðno
1 þ nm2 þm3Þ2

(5)

where the first term on the right is the logarithm of the solvent
molar fraction. Eq. (5) describes the asymptotic behavior thatmust
follow a1(m2, m3).

Coefficients Aij can be related to the limiting experimental
behavior starting from Eq. (5). Differentiating Eq. (5) with respect
to z,

1
a1

@a1
@z

� �
¼ � 2n2z

ðno
1 þ n2z2 þm3Þ

þ 4Agn2zno
1

ðn2z2 þm3Þ
ðno

1 þ n2z2 þm3Þ3
(7)

and taking the limit for the solvent molar fraction x1!1, the
coefficient A11 is evaluated,

A11 ¼ lim
x1!1

@a1
@z

� �
¼ 0 (8)

Then the differentiation with respect to m3,

1
a1

@a1
@m

� �
¼ � 1

ðno
1 þ n2z2 þm3Þ

þ 2Agno
1

ðn2z2 þm3Þ
ðno

1 þ n2z2 þm3Þ3
(11)

leads to coefficient A12,

A12 ¼ lim
x1!1

@a1
@m3

� �
¼ � 1

no
1

(12)

Applying the same procedure with the derivatives of higher
order of Eq. (5) and taking into account the relationship between
the derivatives of ln a1 and those of a1, it can be demonstrated the
following identities,

A21 ¼ 1
2
lim
x1!1

@2a1
@z2

� �
¼ � n

no
1

(13)

A22 ¼ lim
x1!1

@2a1
@m3@z

� �
¼ 0 (14)

A23 ¼ 1
2
lim
x1!1

@2a1
@m32

� �
¼ ð1þ 2BÞ

2no
12

(15)

A31 ¼ 1
6
lim
x1!1

@3a1
@z3

 !
¼ Ag

3
ffiffiffiffiffiffiffiffi
2no

1

p nAz2A þ nCz2C
� �3=2

(16)

A32 ¼ 1
2
lim
x1!1

@3a1
@z2m3

� �
¼ nð4þ B� CÞ

2no
12

(17)

A33 ¼ 1
2
lim
x1!1

@3a1
@zm2

3

 !
¼ 0 (18)

A34 ¼ 1
6
lim
x1!1

@3a1
@m3

3

 !
¼ �ð3þ 18BÞ

6no
13

(19)

Substituting the coefficients given in Eqs. (8,12–19) into
Eq. (2), the following expression of the dependence a1(z, m3) is
obtained,

a1ðz;m3Þ ¼ 1� 1
no
1
m3 � n

no
1
z2 þ ð1þ 2BÞ

2no
12

m2
3

þ Ag

3
ffiffiffi
2

p
no
1

nAz2A þ nCz2C
� �3=2h i

z3 þ nð4þ B� CÞ
2no

12
z2m3

� ð3þ 18BÞ
6no

13
m3

3 þ A41 z4 þ A
42z3m3 þ A43z2m2

3

þ A44z42m3
3 þ A45m4

3 þ A51z5 þ . . . (20)

From the comparison of Eqs. (20) and (2), it can be observed
that the number of coefficients is decreased from15 to 8. Renaming
the coefficients and expressing Eq. (20) on terms of total molality
m2, the final expression is,
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