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a  b  s  t  r  a  c  t

To  test  the  thermodynamic  stability  and  to  determine  the  equilibrium  phase  compositions  in case  the
original  phase  is  found  unstable  is  one  of  the  greatest  challenges  associated  with  calculating  thermody-
namic  properties  of multi-component  mixtures.  The minimization  of  the  tangent  plane  distance  function
is  a widely  used  method  to  check  for stability,  while  different  approaches  can  be  chosen  to  minimize
the  Gibbs  energy  in  order  to  find  the  phase  equilibrium.  While  these  two  problems  have been  applied  to
several  different  thermodynamic  models,  very  little  work  has  been  published  on  such  algorithms  using
multi-parameter  Helmholtz  energy  equations  of  state.  In  this  work,  combined  stability  and  flash  calcu-
lation  algorithms  at given  pressure  and  temperature  (p,T), pressure  and  enthalpy  (p,h),  and  pressure  and
entropy  (p,s)  are  presented.  The  algorithms  by  Michelsen  et  al. (1982,  1982,  1987)  are  used  as  basis  and
are  adapted  to  multi-parameter  Helmholtz  energy  models.  In addition,  a robust  and  sophisticated  den-
sity solver  is proposed  which  is necessary  for the  calculation  of  properties  from  the  Helmholtz  energy
model  at given  state  variables  other  than  temperature  and  density.  All  partial  derivatives  necessary  to
solve the  isothermal,  isenthalpic  and  isentropic  flash  problems  using  numerical  methods  based  on the
Jacobian  matrix  are  derived  analytically  and given  in  the  supplementary  material  to  this  article.  Results
for  some  multi-component  systems  using  the  GERG-2008  model  (Kunz  and  Wagner,  2012)  are  shown
and  discussed.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The analysis of the stability of a mixture at given condi-
tions and phase equilibrium calculations were in the focus of
research over the past decades and still continue to be important
problems in thermodynamics. To ensure thermodynamic stabil-
ity, the total state functions G(T, p, n̄), A(T, V, n̄), U(S, V, n̄), and
H(S, p, n̄) have to be at the global minimum. Hence algorithms
are needed to minimize the state functions for any given mix-
ture. Depending on the application, different demands may  be
formulated for such algorithms. In general a compromise for the
contradictory goals of developing a fast and efficient but likewise
reliable and stable algorithm has to be found. Various algorithms
have been proposed to solve this kind of problem, all of them hav-
ing advantages and shortcomings. The published algorithms may
be split into two sub-categories: stochastic and deterministic algo-
rithms. Deterministic algorithms (see e.g. [1–4]) utilize a separate
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stability analysis and continue solving the phase equilibrium prob-
lem. Stochastic algorithms (e.g. [5–8]) minimize the state function
by applying a global optimization method.

In addition to the different types of algorithms the type of the
equation of state has to be considered when choosing a solution
method. Some of the algorithms proposed have been designed to
simplify calculations using a specific type of equation (cubic equa-
tions of state (EOS), gE models, etc.). However, only few methods
have been designed and tested for multiparameter fundamental
EOS explicit in the Helmholtz energy [9]. Kunz et al. [4] described
the basic principles of treating phase equilibria for mixtures using
Helmholtz EOS and the method of Michelsen [2,3] in combination
with analytical derivatives needed to solve the phase equilibrium
conditions. This method was taken as a basis in this work; corre-
sponding algorithms were reformulated in conjunction with the
development of a new thermodynamic property program library,
and extended for isentropic and isenthalpic flash calculations using
analytical derivatives. Furthermore, methods are presented to pre-
dict the stability of mixtures modeled with Helmholtz EOS based
on given temperature and pressure, pressure and enthalpy, and
pressure and entropy.
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2. Helmholtz equations of state

Many models for thermodynamic properties of mixtures may  be
found in the literature. Most of these models are based on equations
of state for the fluid phase(s) of pure substances. Cubic equations
of state (e.g. [10–12]) with various modifications (e.g. the CPA [13]
or PSRK [14] models) are most commonly used to describe phase
equilibria. For this kind of equations, different approaches to model
mixtures exist. Either rather simple linear or quadratic mixing rules
may  be applied to the parameters of the EOS or more complex
mixing rules like (modified) Huron-Vidal mixing rules [15] may
be chosen.

However, the models mentioned above have some weaknesses
with regard to the accuracy of calculated thermodynamic prop-
erties [16], particularly at dense homogeneous states. For pure
substances these problems may  be overcome by using fundamen-
tal equations of state explicit in the reduced Helmholtz energy
[17–19]. These equations typically comprise an ideal gas part and
an empirically determined residual part:

a(T, �)
RT

= ˛(�, ı) = ˛o(�, ı) + ˛r(�, ı) (1)

where ı is the reduced density and � is the inverse reduced tem-
perature. It is

ı = �

�c
and � = Tc

T
(2)

In recent times these models have been extended to mixtures.
Based on the work of Tillner-Roth [20], Lemmon and Tillner-Roth
[21], and Lemmon and Jacobson [22], Kunz and Wagner [16] devel-
oped the GERG-2008 equation of state for natural gases and other
mixtures. The basic idea of this model is to combine highly accu-
rate equations of state in the Helmholtz energy using an extended
corresponding states principle. The equation for the mixture reads:

˛(�, ı, x̄) = ˛o(T, �, x̄) + ˛r(�, ı, x̄)  (3)

where ı is the reduced density and � is the inverse reduced tem-
perature according to

ı = �

�r(x̄)
and � = Tr(x̄)

T
(4)

with the reducing functions Tr and �r as functions of the composi-
tion. The mixing rules read:
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The ideal part of the Helmholtz energy for a mixture consisting
of N components is given as:

˛o(T, �, x̄) =
N∑

i=1

xi(˛
o
o,i(T, �) + ln xi) (6)

where ˛o
o,i

are the pure fluid contributions. The residual part of Eq.
(3) is given as
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(xi˛
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where ˛r
o,i

are the residual contributions of the pure fluids and
�˛r(�, ı, x̄) is an empirical multi-parameter function which can

be used to model mixture properties with higher accuracy or to
model complex mixture behavior (for detailed information, see [16]
or Appendix A in the supplementary material to this article). Kunz
and Wagner [16] demonstrated that this type of model can be used
for the very accurate and consistent description of mixture proper-
ties. However, the considerable gain in accuracy when using these
models comes at the prize of high numerical complexity. It is known
that the evaluation of such models is demanding. In the following,
a stable algorithm for phase equilibrium calculations based on pre-
viously published approaches has been adapted to mixture models
based on empirical multiparameter equations of state. New meth-
ods for the calculation of the isothermal (p,T), isenthalpic (p,h), and
isentropic (p,s) flash are presented.

3. Combined stability analysis and isothermal flash
calculation

Given the overall composition x̄spec and the temperature Tspec

and pressure pspec of a mixture, algorithms for property calculation
need to test whether the given phase is stable or whether it splits
in two (or more) phases. If the mixture is found to be unstable, flash
calculations are performed subsequently.

3.1. Stability analysis

The phase stability calculation algorithm used in this work is
based on the formulation by Michelsen [2,3] and [23] and is also
described in the GERG-2004 monograph by Kunz et al., Sect. 7.5 [4].
It uses the tangent plane condition of the Gibbs energy of mixing as
stability criterion, which was first introduced by Baker et al. [24].
The tangent plane distance function TPD

TPD(w̄) =
N∑

i=1

wi[�i(w̄) − �i(x̄spec)]≥0, (8)

has to be non-negative for any trial phase with the composition w̄
to ensure that the initial phase with the composition x̄spec is stable.
The expression above can be transformed to a more convenient
reduced form, which uses the fugacity coefficients ϕi rather than
the chemical potentials �i

tpd(w̄) = TPD(w̄)
RTspec

=
N∑

i=1

wi[ln wi + ln ϕi(w̄) − ln xi,spec − ln ϕi(x̄spec)].  (9)

The relation between the fugacity and the reduced Helmholtz
energy is given in Appendix A in the supplementary material (Eq.
A.12). The stability check for a thermodynamic system at given Tspec

and pspec is performed in three steps.
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