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Humanmicrobiome research is an actively developing area of inquiry, with ramifications for our life-
styles, our interactions with microbes, and how we treat disease. Advances depend on carefully
executed, controlled, and reproducible studies. Here, we provide a Primer for researchers from
diverse disciplines interested in conductingmicrobiome research.We discuss factors to be consid-
ered in the design, execution, and data analysis of microbiome studies. These recommendations
should help researchers to enter and contribute to this rapidly developing field.

Introduction
Many studies have documented differences in the composition

of host-associated microbial communities between healthy

and disease states (Clemente et al., 2012; Karlsson et al.,

2013; Knights et al., 2013). For a growing number of diseases,

an altered microbiome is not just a marker of disease, but also

actively contributes to pathology (Chassaing et al., 2012). The

best empirical direct evidence that microbiomes can drive dis-

ease comes from experiments in which the microbiota from

diseased donors and controls are ‘‘transplanted’’ into healthy

germ-free hosts: if recipients of the disease-associated micro-

biome display the disease phenotype, themicrobiome is consid-

ered causal. This approach, pioneered by Jeffrey Gordon and his

group (Turnbaugh et al., 2006), has directly demonstrated that

the composition of gut microbial communities can alter host

metabolism (Koren et al., 2012; Vijay-Kumar et al., 2010), trans-

mit colitis (Garrett et al., 2007), and modulate type I diabetes

(Wen et al., 2008). The range of conditions with a host-micro-

biome interaction component continues to grow and has

recently started to include neurological conditions (Collins

et al., 2012). Consequently, researchers from a wide array of dis-

ciplines are interested in testing whether microbes, and espe-

cially gut microbes, are associated with various pathologies,

whether they actively participate in disease, and ultimately

whether they can present novel targets for therapies. This Primer

is intended for non-experts who are considering their first micro-

biome project and summarizes lessons learned from past suc-

cessful and unsuccessful projects.

Mammalian microbiome research has a long history (Savage,

1977), recently marked by dramatic increases in scale and scope

due to advances in DNA-sequencing technologies and in asso-

ciated computational methods. Anecdotal descriptions of com-

munity composition that set the standard in the recent past have

given way to study designs that allow for repeated measure-

ments, error estimates, correlations of microbiota with covari-

ates, and increasingly sophisticated statistical tests (Knight

et al., 2012). Today, microbiome data are obtained predomi-

nantly in three forms: (1) 16S rRNA gene sequence surveys

that provide a view of microbiome membership, (2) metage-

nomic data used to portray functional potential, and (3) meta-

transcriptomic data to describe active gene expression. Here,

we focus primarily on 16S rRNA gene surveys because they

are economical and therefore scale to larger projects. 16S

rRNA gene sequence data provide a relatively unbiased charac-

terization of bacterial and archaeal diversity (Box 1 provides a

brief overview of methods for characterizing the diversity of

microbial eukaryotes and viruses). Regardless of the types of

microorganisms targeted or the methodology used to charac-

terize them, choices made at every step, from study design to

analysis, can impact results. This Primer highlights resources

that address specific technical questions and provides general

advice stemming from our collective experience working in the

field. Althoughwe focusmainly on themammalian gutmicrobiota,

many of the same issues apply to microbial communities of other

habitats. We have structured the Primer to answer questions that

are commonly raised by researchers entering the field (Figure 1).

Animal Studies
The Maternal Effect

A large fraction of microbiome studies are conducted in animals,

particularly rodents, as they offer attractive models for human

biology and their environmental conditions can be tightly

controlled. How animals are bred and raised is the most impor-

tant source of confounding factors in microbiome studies con-

ducted in animals. Inoculation of mice at birth (the maternal

effect) is a major factor shaping the composition of the
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microbiota and leads to a sharing of suites of bacteria between

littermates and their mothers that differentiates them frommem-

bers of other families and can persist over several generations

(Ley et al., 2005). The maternal effect determines the specific

suite of microbes available to colonize a host. Subsequently,

the individual host and host diet shapes the relative abundances

of these taxa (Ley et al., 2005; Rawls et al., 2006).

Mitigating the Maternal Effect

Thematernal effect is particularly problematic when it confounds

the experimental effect (see Figure 2 for an example). Because

littermates and even co-caged unrelated animals can share mi-

crobiotas due to coprophagy and other modes of transmission,

randomization of treatments across litters/cages becomes an

important aspect of experimental design. When the goal is to

compare the effect of different genotypes on the microbiome,

the options range from the use of germ-free mice gavaged

with the same inoculum to the use of mixed-genotype litters.

When these options are not available, alternate approaches

include embryo transfers so that mixed genotypes are born

together, cross-fostering, and cohousing post weaning. The

last two options may be the least effective, as microbiotas will

be at least partly assembled. In large studies with multiple

litter/cage replicates, the variance in the data that is attributable

to the maternal effect can be accounted for in statistical models

(Benson et al., 2010).

Using the Maternal Effect to Maximize a Phenotype

In some cases, animals of different genotypes are maintained

separately in order to maximize the maternal effect and obtain

a strong microbial phenotype (Vaishnava et al., 2011; Vijay-Ku-

mar et al., 2010). Separately maintained mice can then be

cohoused to demonstrate the spread of a microbiota between

adults (Lawley et al., 2012; Ridaura et al., 2013). Conversely,

mice can be housed individually to minimize cross-contamina-

tion and maintain individual microbiotas (Ley et al., 2005).

Environment Matters: Microbiotas Vary Greatly among

Facilities

Mouse microbiotas can differ significantly between facilities

even if they have identical genotypes (Friswell et al., 2010). Envi-

ronmental conditions can differ between facilities—for instance,

the water acidity, food, bedding, and so on can differ. But it ap-

pears that different colonies harbor their own populations of

microbes as well. One striking example of this facility effect is

that of the segmented filamentous bacteria (SFB), which have

been reported more common in mice obtained from one com-

mon vendor (JAX) than another (Taconic) (Ivanov et al., 2009).

Box 1. Archaeal, Viral, and Eukaryotic Diversity

Most studies of the human microbiota describe bacterial diversity,

which typically dominates the cellular fraction of the microbiota; but

other taxa, including Archaea, fungi, and other microbial eukaryotes,

and viruses can be present.

Archaea. Archaeal diversity can be characterized using the

commonly employed 515F/806R primer set (and others), and their di-

versity can be analyzed in the same way as bacterial diversity. The

16S rRNA gene is the most widely used marker gene for the Archaea,

and their diversity is represented in reference data sets commonly

used for Bacteria.

Microbial Eukaryotes. Characterization of fungal communities, in

particular, is an active research area. In principle, the bioinformatics

pipeline is the same for eukaryoticmarker genes as for bacterial marker

genes (Iliev et al., 2012). However, the lack of a standard marker gene

and reference database means that the bioinformatics protocols are

not as standardized as for 16S rRNA gene analysis. For fungi, although

several marker gene options exist, the internal transcribed spacer (ITS)

region of the 16S rRNA gene is generally preferred for obtaining high

taxonomic resolution. The UNITE database (Abarenkov et al., 2010)

is often used for ITS sequence-based analyses of fungal sequences.

However, the ITS region is not amenable to alignments across distinct

fungal taxa, so ITS-based fungal community studies frequently do not

make use of phylogenetic metrics for alpha- and beta-diversity com-

parisons. One strategy that is being explored is using the 18S rRNA

gene and ITS in conjunction to define fungal phylogenetic trees. More-

over, the 18S rRNA gene can, in principle, be used to analyze eukary-

otic communities in the samemanner that 16S rRNA genes are used. A

reference database containing many eukaryotic sequences, such as

SILVA (Quast et al., 2013), should be used for such analyses. One

should confirm that the region of the 18S gene amplified discriminates

between the taxa studied and should be aware that the 18S rRNA gene

is not sufficient to characterize the eukaryotic phylogeny: trees built

from 18S sequence alone will likely be of questionable utility.

Viruses. Characterizing the human virome requires a different

approach because, unlike for cellular life, no gene or genomic region

is homologous across all viruses. The current approach for studying

these communities is to isolate virus-like particles (VLPs) using size

fractionation and to sequence those using metagenomics (Caporaso

et al., 2011a; Handley et al., 2012; Hurwitz et al., 2013; Reyes et al.,

2010). Alternatively, viruses can be characterized using DNA microar-

rays (Jack et al., 2009; Palacios et al., 2007).

Figure 1. Conducting a Microbiome Study
The sequential steps of conducting a microbiome study are diagramed, mir-
roring the sections of this Primer.
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