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MinireviewModeling Task Control of Eye Movements

Mary Hayhoe1 and Dana Ballard2

In natural behavior, visual information is actively sampled
from the environment by a sequence of gaze changes.
The timing and choice of gaze targets, and the accompa-
nying attentional shifts, are intimately linked with ongoing
behavior. Nonetheless, modeling of the deployment of
these fixations has been very difficult because they
depend on characterizing the underlying task structure.
Recently, advances in eye tracking during natural vision,
together with the development of probabilistic modeling
techniques, have provided insight into how the cognitive
agenda might be included in the specification of fixations.
These techniques take advantage of the decomposition of
complex behaviors into modular components. A particular
subset of these models casts the role of fixation as that of
providing task-relevant information that is rewarding
to the agent, with fixation being selected on the basis of
expected reward and uncertainty about environmental
state. We review this work here and describe how specific
examples can reveal general principles in gaze control.

Human vision gathers information in complex, noisy, dy-
namic environments to accomplish tasks in the world.
In the context of everyday visually guided behavior, such
as walking, humans must accomplish a variety of goals,
such as controlling direction, avoiding obstacles, and taking
note of their surroundings. They must manage competing
demands for vision by selecting the necessary information
from the environment at the appropriate time, through con-
trol of gaze. How is this done, apparently so effortlessly,
yet so reliably? What kind of a control structure is robust in
the face of the varying nature of the visual world, allowing
us to achieve our goals? While the underlying oculomotor
neural circuitry has been intensively studied and is quite
well understood, we do not have much understanding of
how something becomes a target in the first place [1].

It has long been recognized that the current behavioral
goals of the observer play a central role in target selection
[2–4]; however, obtaining a detailed understanding of exactly
how gaze targets are chosen on the basis of cognitive state
has proved very difficult. One reason was that, until recently,
it has been difficult to measure eye movements in active
behavior, so the experimental situations that were examined
typically involved fixing the subject’s head and measuring
gaze on a computer monitor. Within this tradition it was
natural first to consider how stimulus features such as
high contrast or color might attract gaze. Formalizing this
approach, Koch and Ullman [5] introduced the concept of
a saliency map that defined possible gaze points as regions
with visual features that differed from the local surround.
For example, a red spot on a green background is highly
salient and attracts gaze. It was quickly recognized that

visual features alone are insufficient, and that stimulus-
defined saliency or conspicuity is modulated by behavioral
goals, or top-down factors, to determine the priority of
potential gaze points.
Consequently, in later models of salience (or priority) the

stimulus saliency computations were weighted by factors
that reflected likely gaze locations, such as sidewalks
or horizontal surfaces, or introduced a specific task such
as searching for a particular object [6,7]. These models
reflected the consensus that saccadic target selection is
determined by activity in a neural priority map of some kind
in areas such as the lateral intra-parietal cortex and frontal
eye fields [8–10]. This kind of modeling has a critical limi-
tation, however, in that it applies to situations where the sub-
ject inspects a static image on a computer monitor, and
this situation does not make the same demands on vision
that are made in the context of active behavior, where visual
information is used to inform ongoing actions [11]. While
there have been successful attempts to model specific
behaviors such as reading or visual search, we need to
develop a general understanding of how the priority map
actively transitions from one target to the next as behavior
evolves in time.
The use of a computer monitor was typically imposed by

the limitation of eye tracking methodology, which required
that the subject’s head be in a fixed position. This limitation
was removed, however, when Land [12] developed a simple
head-mounted eye tracker that allowed observation of
human gaze behavior in the context of everyday tasks. This
development provided a more fertile empirical base for
understanding how gaze is used to gather information to
guide behavior. In the subsequent decades, improvements
in eye tracking methodology have allowed a wide variety of
natural visually guided behavior to be explored [11,13,14].
While these observations have provided very clear evidence
for the control of gaze by the current cognitive agenda, a sec-
ond critical roadblock has been the difficulty in developing
a deeper theoretical understanding of how this agenda
determines changes of gaze from one target to the next,
given the inherent complexity of interactions with the world
in the course of natural behavior. It is these gaze transitions
that are hard to capture in standard experimental paradigms,
and the problem that we address here is how to capture the
underlying principles that control them.
The challenge of modeling tasks is at first blush intrac-

table, given the diversity and complexity of visually guided
behavior. Observations of gaze control in natural behavior,
however, suggest a potential simplifying assumption,
namely, that complex behavior can be broken down into
simpler sub-tasks, or modules, that operate independently
of each other, and thus must be attended to separately.
For example, in walking, heading towards a goal and avoid-
ing obstacles might be two such sub-tasks. The gaze control
problem then reduces to one of choosing which sub-task
should be attended at any moment; for example, whether
to look towards the goal or to look for obstacles. In both
these cases, gaze is taken as an indicator of the current
attentional focus for subtask computation. Gaze and atten-
tion are very tightly linked [15,16] and there is now a sig-
nificant body of work on natural gaze control suggesting
that gaze is a good, although imperfect, indicator of the
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current attentional computation. Subjects sequentially
interrogate the visual image for highly specific, task-relevant
information, and use that information selectively to accom-
plish a particular sub-task [17–19]. In this conceptualization,
vision is seen as fundamentally sequential. Thus, gazing at
a location on the path aheadmight allow calculation of either
the current walking direction or the location of an obstacle
relative to the body, but it is assumed that these compu-
tations are sequential rather than simultaneous, given that
both are attentionally demanding.

While the assumption of independent sub-tasks is almost
certainly an oversimplification, it is a useful first step, as it
is consistent with a body of classic work on a central atten-
tional bottleneck that limits simultaneous performance of
multiple tasks (for example [20,21]). For the most part, a
new visual computation will involve a shift in gaze. This is
not always true, for example, when spatially global visual
information is needed, or when peripheral acuity is good
enough to provide the necessary information without a
gaze shift; however, it is valid for many instances, and it is
those cases we focus on here.

In this minireview, we shall describe models of gaze
control that use the simplification of modules in two different
but closely related contexts. In the first situation, we con-
sider the problem of how to allocate attention, and hence
gaze, to different but simultaneously active behavioral goals.
In driving a car, simultaneously active goals might be to
follow a lead car while obeying a speed limit and staying in
the lane. Here, the challenge for gaze is to be in the right
place at the right time, when the environment is somewhat
unpredictable. This setting deals with the problem of compe-
tition between potential actions and has been labeled ‘‘the
scheduling problem’’ [22]. The second situation tackles the
problem of structuring elaborate behavioral sequences
from elemental components. We consider a sequential
task, such as making a sandwich, where gaze is used to pro-
vide information for an extended sequence of actions. The
question asked is: given gaze location and hand movement
information of a subject in the process ofmaking a sandwich,
can we determine the stage in the construction they are
currently working on? It turns out that a probabilistic model,
termed a dynamic Bayes network [23], provides sufficient
information to identify each task stage. Thus, the observed
data are used to infer the internal state that generates the
behavior.

Task Modules, Secondary Reward
and Reinforcement Learning
Multiple tasks that are ongoing simultaneously are a ubiqui-
tous characteristic of general human behavior and con-
sequently the brain has to be able to allocate resources
between them. This scheduling problem can be addressed
if there is a way of assigning value to the different tasks.
It has been demonstrated that external reward, in the form
of money or points in humans, and juice in monkeys, influ-
ences eye movements in a variety of experiments [1,24,25].
It remains to be established how to make the definitive
link between the primary rewards used in experimental
paradigms and the secondary rewards that operate in natu-
ral behavior, where eye movements are for the purpose of
acquiring information [1,11]. In principle, the neural reward
machinery provides an evaluation mechanism by which
gaze shifts can ultimately lead to primary reward, and thus
potentially allow us to understand the role that gaze patterns

play in achieving behavioral goals. A general consensus is
that this accounting is done by a secondary reward estimate,
and a huge amount of research implicates the neurotrans-
mitter dopamine in this role. It is now well established that
cells in many of the regions involved in saccade target selec-
tion and generation are sensitive to expectation of reward,
in addition to coding the movement itself [26–31]. The
challenge is to distill this experimental data into a more
formal explanation.
All natural tasks embody delayed rewards whereby deci-

sions made in the moment must anticipate future conse-
quences. The value of searching for a type of food must
include estimates of its nutritional value, as well as costs in
obtaining it. Furthermore, the value of a task at its initiation
can only reflect the expected ultimate reward, because
reward in the natural world is uncertain. Moreover, a conse-
quence of this uncertainty is that the initial evaluation needs
to be continually updated to reflect actual outcomes [32].
An important advance in this direction has been the develop-
ment of reinforcement learning models. Recent research
has shown that a large portion of the brain is involved in
representing different computational elements of reinforce-
ment learning models, and this provides a neural basis for
the application of such models to understanding sensory-
motor decisions [32–34]. Additionally, reinforcement learn-
ing has become increasingly important as a theory of how
simple behaviors may be learned [33], particularly as it
features a discounting mechanism that allows it to handle
the problem of delayed rewards.
A central attraction of such reinforcement learning models

for the study of eye movements is that they allow one to pre-
dict gaze choices by taking into account the learnt reward
value of those choices for the organism, providing a formal
basis for choosing fixations in terms of their expected value
to the particular task that they serve. However, reinforce-
ment learning has a central difficulty in that it does not
readily scale up to realistic natural behaviors. Fortunately
this problem can be addressed by making the simplifying
assumption that complex behaviors can be factored into
subsets of tasks served by modules that can operate
more or less independently [22]. Each independent module,
which can be defined as a Markov decision process, com-
putes a reward-weighted action recommendation for all
the points in its own state space, which is the set of values
the process can take. As the modules are all embedded
within a single agent, the action space is shared among all
modules and the best action is chosen depending on the
relative reward weights of the modules. The modules pro-
vide separate representations for the information needed
by individual tasks, and their actions influence state transi-
tions and rewards individually and independently. The
modular approach thus allows one to divide an impractically
large state space into smaller state spaces that can be
searched with conventional reinforcement learning algo-
rithms [35]. The factorization can potentially introduce state
combinations for which there is no consistent policy, but
experience shows that these combinations, for all practical
purposes, are very rare.

Expected Reward as a Module’s Fixation Protocol
The module formulation directly addresses the scheduling
problem in that it allows fixation choices to be understood
in terms of competing modules’ demands for reward. In
the driving scenario, where separate modules might
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