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a  b  s  t  r  a  c  t

The  definition  of general  topological  principles  allowing  for  graph  characterization  is an  important  pre-
requisite for investigating  structure–function  relationships  in  biological  networks.  Here  we approached
the  problem  by  means  of an  explorative,  data-driven  strategy,  building  upon  a size-balanced  data  set
made  of  around  200  distinct  biological  networks  from  seven  functional  classes  and  simulated  networks
coming  from  three  mathematical  graph  models.

A  clear  link  between  topological  structure  and  biological  function  did emerge  in terms  of  class  mem-
bership  prediction  (average  67%  of correct predictions,  p <  0.0001)  with  a varying  degree  of ‘peculiarity’
across  classes  going  from  a very  low  (25%)  recognition  efficiency  for neural  and  brain  networks  to the
extremely  high  (80%)  peculiarity  of  amino  acid–amino  acid  interaction  (AAI)  networks.

We  recognized  four main  dimensions  (principal  components)  as  main  organization  principles  of  bio-
logical  networks.  These  components  allowed  for an  efficient  description  of  network  architectures  and  for
the  identification  of  ‘not-physiological’  (in this  case  cancer  metabolic  networks  acting  as  test  set)  wiring
patterns.

We highlighted  as well  the  need  of developing  new  theoretical  generative  models  for  biological
networks  overcoming  the  limitations  of present  mathematical  graph  idealizations.

© 2016  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

In 1952 the Dutch electrical engineer Bernard Tellegen
(Tellegen, 1952) developed a theorem whose general importance
in science has largely been underestimated (Mikulecky, 2001). Tel-
legen’s theorem gives a simple relation between magnitudes that
satisfy Kirchhoff’s laws of electrical circuit theory. The Tellegen the-
orem is applicable to a multitude of network systems. The basic
assumptions for the systems are the conservation of flow of exten-
sive quantities (Kirchhoff’s current law, KCL) and the uniqueness of
the potentials at the network nodes (Kirchhoff’s voltage law, KVL).
Tellegen’s theorem is a conservation principle of both potential and
flux. The flux does not need to be an electrical current and the same
holds for the potential. A flux of matter (in terms of relative concen-
trations of reagents and products) traverses a metabolic network
and the free energy of the relative reaction is the potential. Similar
reasoning holds for protein contact networks where the molec-
ular motion flows between neighboring residues (nodes) and an
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interaction potential (intramolecular bonds) establishes between
them (Di Paola and Giuliani, 2015).

As aptly stressed by Mikulecky (2001) the theorem opens the
way to a ‘network thermodynamics’ strictly dependent from wiring
architecture while largely independent of the constitutive laws
governing the single elements.

The most spectacular empirical proof of Tellegen’s theorem was
probably in 1956, when Günthard and Primas (1956) realized that
the matrix used in the classical Huckel method for deriving the
energy of � molecular orbitals is a simple function of the adjacency
matrix of the molecular graph.

Renewed interest in the study of complex networks (Albert and
Barabási, 2002; Barabási and Oltvai, 2004), of ‘biological systems as
networks’ boosted out in the beginning of this century.

In the present work, inspired by Tellegen theorem, we look for
‘general principles’ of network wiring architecture in the realm
of biological networks. We are fully aware of the fact that flux
networks (e.g. metabolic networks) and interaction networks (e.g.
gene regulation networks) are drastically different as for their
operational properties (Huang, 2004). Strictly speaking Tellegen’s
theorem only applies to flux networks, notwithstanding that, at a
coarse-grain level, we are convinced the recognition of organiza-
tion principles discriminating different kinds of networks could be
of general interest.
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The existence of properties shared by biological and non-
biological networks was already faced (Girvan and Newman, 2002;
Alm and Arkin, 2003; Palla et al., 2005). These studies, at least to our
knowledge, adopted a theoretical attitude focusing on features like
community structure (Girvan and Newman, 2002; Palla et al., 2005)
or scaling (Barabási and Albert, 1999). Other scientists focused on
detailed analysis of the changes induced in the network wiring by
disease conditions (Ideker and Krogan, 2012).

Here we adopted a somewhat different perspective: instead of
focusing on ‘average’ properties of network classes, we adopted
a bottom-up classification approach somewhat similar to quan-
titative structure–activity relationships (QSAR, Cronin, 2010) and
epidemiological exploratory studies (Price et al., 2006).

Here the focus is no longer on the characterization of an ‘ideal
model’ but on the actual discrimination of networks pertaining
to different categories. This discrimination is obtained through a
bottom-up strategy relying upon the empirical correlations hold-
ing between the data set descriptors. This approach allows for the
derivation of ‘general principles’ in the form of principal compo-
nents of the among descriptors correlation matrix (Benigni and
Giuliani, 1994; Preisendorfer, 1988) acting as order parameters of
the data set.

Principal component analysis (PCA) of topological descriptors
generated a very clear correlation structure indicating three dif-
ferent layers of network organization and an unexpected ‘network
scalar’.

These ‘principles’ allowed us to both discriminate different net-
work classes (so pointing to peculiar organization principles for
each functional class) and to predict a ‘pathological network char-
acter’ of cancer regulation network. It is worth stressing that while
components are each other orthogonal by construction on the
entire data set, they have a rich local (within functional classes) cor-
relation structure: any network class is a peculiar relational model
in the topological component space.

2. Materials and methods

2.1. Data set

Eleven topological network descriptors and one derived feature
defined as transmission load were computed for 222 networks per-
taining to 10 classes in turn subdivided into 7 functional classes (the
network are classified by their biological function) and 3 theoretical
classes solely based on their wiring architecture. We  also investi-
gated 29 cancer metabolic networks pertaining to different cancer
types that were used as ‘test set’ to check the ability of the extracted
component space derived from the 222 networks (training set) to
get rid of (in a totally data-driven way) the peculiar features of
cancer networks.

2.1.1. Topological descriptors
Number of nodes:  Nodes are the key building blocks of every

network, also known as vertices in graph theory. A network is a
system of nodes connected by links (or edges) (Strogatz, 2001). The
number of nodes is a measure of the size of the network.

Shortest path number: The shortest path between two nodes
is the path connecting them with the minimum number of links
to traverse and corresponds to the shortest distance between two
specified nodes in a network. The total number of shortest paths
in a network is thus dependent on both network size and wiring
architecture.

Average shortest path (ASP):  or characteristic length is the
average of shortest path lengths over all pairs of nodes in the
network. ASP participates in the emergence of diverse large-scale
behaviors of network systems. This is particularly evident in AAI

(Amino Acid Interaction Networks), those networks having amino
acid residues as nodes and their contact in 3D space as edges (Zhou
et al., 2014; Di Paola et al., 2012). In AAI, ASP minimization is
demonstrated to be at the basis of an efficient allosteric behavior
of protein molecules (Tasdighian et al., 2013; Del  Sol et al., 2006).

Average degree: The degree of a node is the number of nodes
connected directly to that node also known as the number of direct
connections of a node to other nodes via edges. For an undirected
network including N nodes and L links, 〈k〉 = 2L/N denotes the aver-
age degree of network.

Network density: The ratio of actual connections between
nodes of a network to the maximum potential connections is
defined as the density of that network. For a network by N
nodes potential connections is given by N*(N − 1)/2. This measure
acquires values in the domain of [0,1].

Clustering coefficient: This descriptor has to do with the
tendency of the nodes to cluster together constructing dense neigh-
borhoods. This index builds upon the frequency of ‘triads’ satisfying
the relation ‘if A is directly connected to B and B directly connected
to C, even A is directly connected with C’. For an undirected net-
work, clustering coefficient of a node n is defined as Cn = 2en/(kn

(kn − 1)), where kn is the number of all neighbors of node n and en

is the number of connected pairs between all neighbors of node
(Shannon et al., 2003). We  considered the average of clustering
coefficient over all the nodes of each network.

Network centrality:  Centrality indices have different defini-
tions depending upon the metrics adopted to define the ‘impor-
tance’ of a node. The simplest way (closeness centrality) to define
the centrality of a node i is the inverse of the distances (in terms of
edges to be traverse) from node i to all the other nodes of the net-
work. Here we  adopted the eigen vector centrality (EVC) that cor-
responds to the eigenvalue of the principal eigenvector of the adja-
cency matrix of a network. It is a continuous measure that depends
on more than just the node itself, but also on the surrounding neigh-
borhood (as opposed to degree centrality that is purely local). EVC
is a measure of network well-connectedness (Canright and Engø-
Monsen, 2006; Carreras et al., 2007). EVC is a proxy of the spreading
power of a single node, or a collection of nodes, by the most central
node or by the average EVC of all the nodes in the collection.

Network diameter:  The longest distance between two  nodes
corresponds to network diameter in terms of number of edges to
be traversed (Shannon et al., 2003). It is a measure of the topological
width of the network.

Network heterogeneity: Network heterogeneity corresponds
to node degree variance. Although this descriptor can be computed
for all network types, heterogeneity is one of the most impor-
tant features of scale-free networks. Scale-free networks have
few highly connected nodes (i.e. ‘hubs’) and a great majority of
low-degree nodes. This feature is a result of power law degree
distribution in scale-free networks.

Modularity: Modularity corresponds to the number of links
between residues of the same module minus the expected number
links in the same module if the links of that network were dis-
tributed randomly. Modularity has values in the range of [−1/2, 1]
(Newman, 2006).

Transmission load: Transmission load is the ratio of average
shortest path length to number of nodes in network TL = ASP/N. It
builds upon the recognized correlation between number of nodes
and ASP so giving a normalized measure of ASP linearly indepen-
dent of the size of the network in terms of number of nodes. The
higher the transmission load, the less optimal is the wiring of net-
work in terms of transmission efficiency.

2.1.2. Network classes
We used Cytoscape v 2.8.1 and Cytoscape v 3.1.1 (Shannon

et al., 2003) to perform network parametric analysis and importing
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